[image: image1.png]


Final Year Project:

An I2C FAT12 VHDL Floppy Disk Drive Controller

Craig Dunn

BSc. Computing for Real-time Systems

CEMS

University of the West of England


I2C FAT12 VHDL Floppy Disk Drive Controller

By Craig Dunn

Student Number: 98501786

Email : craig_d73@hotmail.com

[image: image63.png]



UQC120D3 – Computing Final Year Project

BSc. Computing for Real-time Systems

Supervisor:

Mr. Nigel Gunton

Second Reader:
Dr. Rob Williams

Word Count: 
11842
Synopsis

The objective of this project was to design and implement a fully working I2C floppy disk drive controller.  Support for the FAT file system was also to be included.  The entire system was to be implemented with an FPGA using VHDL.

As the project consisted of many individual parts, which all needed to work together, the development was broken down into small manageable tasks.  Each of which had a well-defined milestone.

From the start the project contained many unknowns, which ran the risk of slowing down progress.  For this reason, the design process played a vital part in the final outcome.

A big part of this project was spent reverse engineering a PC’s floppy disk drive and its disk.  This was done with the use of an FPGA and a logic analyzer.  The final outcome of this project is directly related to the reverse engineering.

Table of contents

1. Introduction

1.1 Objective

1.2 Requirements Specification

1.2.1 Functional Requirements

1.2.2 Hardware Requirements

1.2.3 Software Requirements

1.2.4 Operational Requirements

1.2.5 Qualification Requirements

2. The Floppy Disk

2.1 Disk Structure

2.2 Modified Frequency Modulation


2.3 MFM Decoding

2.4 MFM Encoding

2.5 Digital Phase Locked Loop

2.6 Address Marks

2.7 Cyclic Redundancy Check

3. The Disk Drive

3.1 Physical Interface

3.2 Disk Drive Signals

3.2.1 INDEX (output)

3.2.2 DRIVE SELECT 1 (input)

3.2.3 MOTOR ON (input)

3.2.4 STEP (input)

3.2.5 DIRECTION SELECT (input)

3.2.6 WRITE DATA (input)

3.2.7 WRITE GATE (input)

3.2.8 TRACK00 (output)

3.2.9 WRITE PROTECT (output)

3.2.10 READ DATA (output)

3.2.11 SIDE ONE SELECT (input)

3.2.12 DISK CHANGE (output)

3.3 Implementation

4. FAT12

4.1 Structure

4.2 The Master Boot Record

4.3 FAT 1 and FAT 2

4.4 Root Directory

5. I2C

5.1 Overview

5.2 I2C Protocol

5.3 Implementation

5.4 Commands

5.4.1 Read Sector

5.4.2 Write Sector

5.4.3 Read Data

5.4.4 Write Data

5.4.5 Read FAT Entry

5.4.6 Write FAT Entry

5.4.7 Read FAT Value

5.4.8 Write FAT Value

5.4.9 Read Directory Entry

5.4.10 Write Directory Entry

5.4.11 Read Directory Value

5.4.12 Write Directory Value

5.4.13 Read Status

5.5 Interfacing

6. The Controller

6.1 Development

6.1.1 Wire-tapping the PC

6.1.2 Standalone Reading

6.1.3 Standalone Writing


6.2 Reading and Writing

7. Testing

7.1 Test Results

7.1.1 Reading a sector

7.1.2 Writing a sector

7.1.3 Reading a directory

7.1.4 Writing to a directory

7.1.5 Reading a FAT entry

7.1.6 Writing a FAT entry

8. Project Review

8.1 Final Outcome

8.2 Future Improvements

8.3 Lessons Learned

8.4 How would it be done differently

List of Figures
Figure 2.1.1: A floppy disk

Figure 2.1.2: Address Field

Figure 2.1.3: Data Field

Figure 2.2.1: MFM encoding of consecutive zeros

Figure 2.2.2: MFM encoding of consecutive ones

Figure 2.2.3: MFM encoding of bit sequences

Figure 2.2.4: MFM sequence

Figure 2.2.5: MFM Timing

Figure 2.3.1: Decoding MFM

Figure 2.5.1: DPLL FSM

Figure 2.5.2: DPLL in action

Figure 2.5.3: DPLL Missing state SC

Figure 2.5.4: DPLL, although the Basic MFM signal is long it is still valid

Figure 2.5.5: DPLL Adding state SE

Figure 2.5.6: The DPLL in action

Figure 2.6.1: Address Mark MFM Violation

Figure 2.6.2: Address Mark Shift Register

Figure 2.6.3: Basic MFM Encoding Types

Figure 3.2.1.1: INDEX timing

Figure 3.2.4.1: STEP pulse timing

Figure 4.2.1: Master Boot Record

Figure 4.3.1: File Allocation Table 1

Figure 4.3.2: File Allocation Table 2

Figure 4.3.3: The bytes in the FAT

Figure 4.3.4: rw_byte

Figure 4.3.5: read_fat

Figure 4.3.6: write_fat

Figure 4.4.1: The Root Directory

Figure 4.4.2: Directory Entry

Figure 4.4.3: set_directory

Figure 5.3.1: i2c_slave

Figure 5.3.2: i2c_manager

Figure 5.4.1.1: Read Sector

Figure 5.4.1.2: Write Sector

Figure 5.4.3.1: Read Data

Figure 5.4.4.1: Write Data

Figure 5.4.5.1: Read FAT Entry

Figure 5.4.6.1: Write FAT Entry

Figure 5.4.7.1: Read FAT Value

Figure 5.4.8.1: Write FAT Value

Figure 5.4.9.1: Read Directory Entry

Figure 5.4.10.1: Write Directory Entry

Figure 5.4.11.1: Read Directory Value

Figure 5.4.12.1: Write Directory Value

Figure 5.4.13.1: Read Status

Figure 5.5.1: I2C Level Shifting Schematic

Figure 6.1: The controller

Figure 6.1.1.1: The MS-DOS debug command

Figure 7.1: Micro-controller Menu

Figure 7.1.1.1: The sector read by the FPGA

Figure 7.1.1.2: The sector read by the PC

Figure 7.1.2.1: The results of writing a sector

Figure 7.1.3.1: Second directory entry read by the PC

Figure 7.1.3.2: Second directory entry read by the controller

Figure 7.1.4.1: Writing to the second directory entry

Figure 7.1.4.2: The PC reading the updated directory entry

Figure 7.1.5.1: Reading the 5th FAT Entry from the controller

Figure 7.1.5.2: Reading the FAT from the PC

Figure 7.1.6.1: The controller writing to the FAT

Figure 7.1.6.2: Reading both FAT’s from the PC
List of Tables
Table 2.1.1: Address Field Contents

Table 2.1.2: Data Field Contents

Table 2.7.1: Parallel CRC Table

Table 3.1.1: Drive Connector

Table 4.4.1: Root Directory Entry

Table 4.4.2: Attributes Bits

Table 5.4.13.1: Status register bits

1. Introduction

This report is for a final year project carried out by Craig Dunn.  As the title suggests, it documents the design and implementation of an I2C floppy disk drive controller in an FPGA using VHDL.

Floppy disks are now being replaced by bigger and faster storage mediums, but they still prove to be a viable choice for small storage applications.  One example of such an application is a digital oscilloscope.

An I2C interface was chosen for the following reasons:

· Popularity – the I2C protocol is commonplace in many devices.  Some of these devices include motherboards, laptop batteries, and most micro-controllers.

· Well Defined – the specification is available on the Internet.

· Speed – the relatively slow I2C bus is well suited for the slow disk drive.

· Testing / Debugging – due to the slow speed and simplicity of the I2C bus, testing and debugging can be carried out with ease.

To increase the user friendliness of the system, support for the FAT12 file system is included.  As all of the development is done in a Microsoft Windows operating system, supporting a Microsoft file system seems the obvious choice.

A lot of the problems and techniques encountered during this project are similar to the ones that would be encountered with the latest technologies.  One of the benefits that a floppy disk drive system has other the latest technologies is that it can be implemented within a relatively small budget.  Some of the more modern high-speed systems would require expensive high-speed equipment.

1.1 Objective

The objective of this project is to implement a fully working floppy disk drive controller.  The I2C interface is to provide a simple interface to the controller allowing it to be used by devices such as small 8 bit microcontrollers.  A final measure of this projects success will be the ability to read and write a PC’s floppy disk.

1.2 Requirements Specification
This section of the report makes up the final requirements specification for the system.  

1.2.1 Functional Requirements

The completed system must provide an easy to use 400KHz I2C interface to a standard 3.5-inch floppy disk drive.  The disk drive can only be controlled by the I2C interface, any extra command / status lines are not allowed.  A limited amount of FAT12 file-system support is also required.  The system must be able to perform the following operations:

· Read a sector

· Write a sector

· Read an entry from the first FAT

· Write a new entry to both FAT’s

· Read a directory

· Write a directory

· Read the controller’s status

The controller also needs to detect whether or not a disk is in the drive, whether or not the disk is write protected, CRC errors, and seek errors (e.g. no such sector).  When an error is detected the controller should handle it appropriately.

1.2.2 Hardware Requirements

The following components will make up the complete system:

· A BurchED evaluation board containing a Xilinx Spartan 2E FPGA (programmed via a JTAG cable).

· A standard 3.5-inch floppy disk drive.

· Level shifting circuitry to convert the 5V disk drive and I2C bus levels to the 3.3V FPGA level.

· A micro-controller (Microchip PIC16F874) to test and demonstrate the finished system.

· An I2C EEPROM used for testing and making sure the controller does not interfere with other I2C devices.

· LED’s for testing purposes.

The FPGA evaluation board contains 2.54mm pitch connectors, a programmable timer, a 3.3V regulator, and a 5V regulator.  The programmable timer is suitable enough to act as the master clock for the entire system.  

The master clock will run at 32MHz and all inputs will be synchronised with its rising edge.  The entire system will be clocked on the rising edge of the master clock.

All additional components (level shifting circuitry, micro-controller, and LED’s) will be mounted on a single roadrunner prototyping board.  This board will then connect to the FPGA via ribbon cables.  All 5V devices, with the exception of the disk drive, will be powered from the 5V regulator on the FPGA evaluation board.  Due to the current requirements the disk drive will be powered from a separate 5V power supply.

The micro-controller will receive commands from a PC via the RS232 serial port and then convert these commands into I2C commands for the controller.  Communications with the micro-controller will be bi-directional.

1.2.3 Software Requirements

The project as such does not create any new software in the normal sense as the system will be developed in VHDL and uploaded to the FPGA.  The micro-controller will be programmed in PIC assembler.

The Xilinx ISE 4.2i development suite will be used for all VHDL development.  The micro-controller will be programmed using Microchip MPLAB 6.1.  Communications between the microcontroller and PC will take place using the Microsoft Windows based HyperTerminal.

1.2.4 Operational Requirements

As the FPGA is volatile the final system will need to be reprogrammed via the JTAG cable when power is first applied.

1.2.5 Qualification Requirements

The system is considered to be complete when each of the following bullet points can be met:

· The controller can write data to a sector, which can then be read by a PC.
· The controller can read data from a sector, which has been written by a PC.
· The controller can write a new entry to both FAT’s.
· The controller can read an entry from the first FAT.
· The controller can write a new directory entry.
· The controller can read a directory entry.
· The controller can detect errors such as no disk in the drive, CRC errors, write protect errors, and seek errors. 

· The controller should act as a true I2C slave and not interfere with other slaves and masters.

When the system is complete every part of it should be easy to demonstrate. 

2. The Floppy Disk
The type of disk used in this project is a standard 1.44MB 3.5-inch double-sided floppy disk.  This section of the report describes what is involved in reading and writing the disk.

2.1 Disk Structure
A floppy disk contains a thin plastic disk; see figure 2.1.1, which is coated in a ferromagnetic material.  When the ferromagnetic material is exposed to a magnetic field it will become magnetized.  A disk is double sided and each side is made up of a series of concentric tracks.  Each track is further broken down into a series of sectors.

[image: image2.png]



(Fig. 2.1.1) – A floppy disk

A 1.44MB floppy disk contains 2 sides, 80 tracks per side, and 18 sectors per track.  The first track has an index of zero and the first sector of each track has an index of one.  Side zero contains all the even numbered tracks and side one contains all the odd numbered tracks.

Due to tolerances in the mechanics and electronics of a floppy disk drive, the precise location of each sector can vary from disk to disk.  For this reason a floppy disk is referred to as soft sectored, as opposed to hard sectored.  In a soft sectored system the positional information of each sector has to be stored on the disk, in the area known as the Address Field.  The Address Field is located at the start of each sector; see figure 2.1.2 and table 2.1.1.


[image: image3.wmf]0xA1

0xA1

0xA1

0xFE

ADDRESS MARK

TRACK

HEAD

SECTOR

# BYTES

CRC

HIGH

CRC

LOW

SYNC

12 Bytes

of 0x00

GAP

22 Bytes

of 0x4E


(Fig 2.1.2) – Address Field

	Field Name
	Field Size (bytes)

	SYNC
	12

	Address Mark (AM)
	4

	Track Number
	1

	Head Number
	1

	Sector Number
	1

	Number of Bytes
	1

	CRC
	2

	Gap
	22


(Table 2.1.1) – Address Field Contents

Following the Address Field is the Data Field.  This is where the file-system stores it information.  Each sector contains one Data Field; see figure 2.1.3 and table 2.1.2.


[image: image4.wmf]0xA1

0xA1

0xA1

0xFB

ADDRESS MARK

512 Bytes of Data

SYNC

12 Bytes

of 0x00

CRC

HIGH

CRC

LOW

Big

Gap of

0x4E


(Fig. 2.1.3) – Data Field

	Field Name
	Field Size (bytes)

	SYNC
	12

	Address Mark (AM)
	4

	Data
	512

	CRC
	2

	Gap
	Programmable


(Table 2.1.2) – Data Field Contents

The SYNC bytes at the start of the Address and Data Fields are used to synchronize the DPLL (Digital Phase Locked Loop).  The programmable gap at the end of the Data Field allows for differences in writing speeds, without this programmable gap every disk drive would have to write at exactly the same speed.  The CRC and address marks are discussed later in the report due to their importance.

The structure of a disk is fixed and does not change for the file-system.  The file-system only has an effect on the 512 bytes of storage space in the Data Field.  If the structure of the disk were to change then each file system would require it’s own custom hardware.

As well as the Address Field and the Data Field, a disk also contains an Index Address Field.  Each track starts with an Index Address Field.  The purpose of this field is not clear, but it maybe present to replace the physical index hole that was present in the old 5.25-inch floppy disks.  As modern floppy disk drives have a hardware based index signal, the Index Address Field serves no purpose and is ignored in this project.

2.2 Modified Frequency Modulation
All data on a floppy disk is read and written in a serial stream.  Due to tolerances in the reading and writing speeds of different disk drives the clock signal is stored on the disk.  It is done so by embedding it within the data signal using a method known as MFM (Modified Frequency Modulation).

MFM works by inserting a flux reversal (0V to 5V, 5V to 0V) in-between consecutive zeros; see figure 2.2.1.

[image: image5.png]NERRRRD!
o
e




(Fig. 2.2.1) – MFM encoding of consecutive zeros

A logic value of one is stored by inserting a flux reversal in the middle of the bit period; see figure 2.2.2.

[image: image6.png]MIBHIARRE
o
are SR o




(Fig. 2.2.2) – MFM encoding of consecutive ones

When the bit sequences contain mixed values the encoding scheme can miss flux reversals out.  This is best shown by figure 2.2.3.

[image: image7.png]@

0

o

o

bit sequence

) ovion
o
v

ot
o
s

oot
o

EY
1100
v

one bi period




(Fig. 2.2.3) – MFM encoding of bit sequences

As can be seen from figure 2.2.3, the time between the flux reversals can be one bit period, one and a half bit periods, or two bit periods.  A gap of one bit period only occurs during consecutive bits, whereas a gap of one and a half bit periods only occurs during a bit change.  A gap of two bit periods is a special case in that it only occurs during the bit sequence of ‘101’; see figure 2.2.3.b.  The Address Mark of a disk deliberately uses the gap of two bit periods in a way that violates the MFM encoding rules; this is described in detail in section 2.6.

One feature of MFM, which introduces some complications, is that the same MFM sequence can have different values depending on its position.  This is best shown by figure 2.2.4.

[image: image8.png]B
oy




(Fig. 2.2.4) – MFM sequence

Assuming the time between the flux reversals in figure 2.2.4 is one bit period, does the signal represent a bit sequence of consecutive ones or zeros?  There is no way to tell.  The only way to decode the signal correctly is to start from a known point and remain synchronized.  The problems of synchronisation are dealt with in section 2.6.

So, from the current description of MFM the following basic rules can be arrived at:

1)
A flux reversal in the middle of the bit period always represents a logic value of one.

2)
No flux reversal in the middle of the bit period always represents a logic value of zero.


3)
A bit sequence of ‘101’ is always represented by a flux gap of two bit periods.

4) A change of bit value is always represented by a flux gap of one and a half bit periods, with the exception of the sequence ‘101’.

The MFM encoded data going to and from the disk drive has a frequency of 500KHz, with a 0.5% tolerance; see figure 2.2.5.


[image: image9.png]READ_DATA

S

o b

2 3us aus

Al values have a tolerance of £0.5%





(Fig. 2.2.5) – MFM Timing

The times of 2us, 3us, and 4us in figure 2.2.5 represent the MFM gap lengths of one bit period, one and a half bit periods, and two bit periods respectively.

2.3 MFM Decoding

To decode the MFM signal, a clock running at twice the maximum frequency of the disk drive is generated.  This clock is referred to as DPLL_CLK.  The clock is then used to sample the MFM signal coming from the disk drive.  As the flux transitions of the MFM signal are quite short and easy to miss, a new MFM signal is created, which replaces the short pulses with a longer transition.  The original MFM signal is referred to as FDD_MFM and the new MFM signal is referred to as Basic MFM.  Figure 2.3.1 shows how the DPLL_CLK is used to decode the Basic MFM signal.

[image: image10.png]BrvamE; o 0 0
Goatan) ] ]
i
EESCIE
Gznwey

One b periot




(Fig. 2.3.1) – Decoding MFM

From figure 2.3.1, it can be seen that if the Basic MFM signal remains constant during the bit period (marked with an ‘A’ in figure 2.3.1) then that is considered to represent a bit value of zero.  However, if the Basic MFM signal changes during the bit period (marked with a ‘B’ in figure 2.3.1) then that is considered to represent a bit value of one.  The Basic MFM signal is always sampled on the rising edge of DPLL_CLK.  Section 2.6 deals with the issue of knowing when a bit starts.

2.4 MFM Encoding

The following three rules are applied when encoding data with MFM:

1) If the current bit is a one, generate a flux reversal in the middle of the bit period.

2) If the current bit is a zero and the next bit is a zero, generate a flux reversal at the end of the bit period.

3) If the current bit is a zero and the next bit is a one, do not generate a flux reversal for the current bit period.

As can be seen from the three encoding rules, to encode data with MFM not only requires knowing what the current bit is, but also requires knowing the next bit.

2.5 Digital Phase Locked Loop
The DPLL (Digital Phase Locked Loop) generates a 1MHz clock signal (DPLL CLK), which is locked on to the Basic MFM signal.  The DPLL is vital in that the MFM signal does not arrive at steady rate and small glitches in the signal are amplified for every revolution of the disk.  For this reason, it is necessary to make small real-time changes to the 1MHz clock to keep it synchronized.

Originally a USB DPLL was to be used, but this was found to be over sensitive and as a result could not lock on to the Basic MFM signal.  To overcome this a new DPLL was designed.  Figure 2.5.1 shows the state machine for the new DPLL.


[image: image11.wmf]SA

SD

SB

SC

SE

DPLL_CLK = ‘1’

DPLL_CLK = ‘0’

DPLL_CLK = ‘0’

DPLL_CLK = ‘1’

d_mfm == BASIC_MFM

d_mfm != BASIC_MFM

a_mfm == BASIC_MFM

a_mfm != BASIC_MFM

d_mfm = BASIC_MFM

d_mfm = BASIC_MFM

DPLL_CLK = ‘0’

a_mfm = BASIC_MFM

a_mfm = BASIC_MFM

d_mfm = 0

RST

NOTE : States only

change on the rising

edge of a 4 MHz clock

(CLK_4MHZ).


(Fig. 2.5.1) – DPLL FSM

When the DPLL is perfectly locked on to the Basic MFM signal the state machine in figure 2.5.1 will run through states SA, SB, SC, and SD; see figure 2.5.2.  


[image: image12.png]EBIGY

[EASCHEN]

saisBiscisDisaisBiscispisaissiscisp

L
Mz




(Fig. 2.5.2) – DPLL in action

As can be seen from figure 2.5.2 the Basic MFM signal should only change during the falling edge of DPLL_CLK.  The ‘Basic MFM’ signal is then sampled on the rising edge of DPLL_CLK.

During testing it has been found that if the DPLL makes an adjustment to its output clock, the clock is still suitable for sampling the Basic MFM signal.  In other words, if the DPLL_CLK is adjusted half way through a byte, the byte will still be read correctly.  In the off chance that the DPLL_CLK incorrectly samples the Basic MFM signal the controller will detect the error via the CRC check at the end of the relevant field.  Figure 2.5.3 shows how the DPLL can adjust its output while still sampling the Basic MFM signal correctly.


[image: image13.png]EBIGY

SHORT

[EASCHEN]

saisBiscisDisaisBispisaiseiscisp

1t

[ S
iz





(Fig. 2.5.3) – DPLL Missing state SC

Figure 2.5.4 shows that if the ‘Basic MFM’ signal is too long the DPLL output can still sample the signal correctly without making any changes.


[image: image14.png]EBIGY

LoNG
[EASCHEN]
[PPLLOK]

saisBiscisDisaisBiScispisaissiscisp

L
Mz




(Fig. 2.5.4) – DPLL, although the Basic MFM signal is long it is still valid

In the worst case scenario that the Basic MFM signal changes on the rising edge of DPLL_CLK the DPLL will add an extra state (state SE), which will cause future samples to be correct; see figure 2.5.5.


[image: image15.png]EBIGY

=

[EASCHEN]

saisBiscisDisaiSEisBiSCisDiSAisBiSCisD

+

I S
iz




(Fig. 2.5.5) – DPLL Adding state SE

In figures 2.5.2 to 2.5.5 the flux reversals of the MFM signal are shown only appearing at the start of each DPLL state.  This gives the best and worst cases and is sufficient for explaining how the DPLL works.  In reality the flux reversals usually appear during the DPLL states rather than at the start.  Figure 2.5.6 shows a screen shot of a logic analyzer while the DPLL is making adjustments to its output.

[image: image16.png]Wiohoms | Co| Ci[[B0u  7RAu  (7BGu (752w (73Ew 72w 0w (@B (s7au  (SReu  (Bhe (Rd4w (S0
(I i | 6 A I i A 5 A I i A

oo Ny “L‘l“ S m ‘M\‘_l P PR
1 ]

sesIc_FU 1 1 j |
oruow 1o LT LT LT LU L LT L L L L Lo
Chomel2

Chanel 7

Chanel 5

.

.

. T

0 !
.

.

'

0
0
Chamel | 0
0
o

Chanel 6





(Fig. 2.5.6) – The DPLL in action

2.6 Address Marks
As has been previously stated, MFM encoded data provides no beginning of bit or byte markers.  To overcome this, each address and data field begins with a 4 byte Address Mark.  The Address Mark is unique in that the first three bytes contain an MFM encoding violation that should appear nowhere else on the disk.  The encoding violation is shown in figure 2.6.1 and the locations of the Address Marks are shown in figures 2.1.2 and 2.1.3.


[image: image17.png]1ioiaio

VIOLATION P

1 ioi1ioioioio

[CORRECT]

one bi period





(Fig. 2.6.1) – Address Mark MFM Violation

As can be seen from figure 2.6.1, the sequence of two zero’s has been represented using an MFM gap of 2 bit periods, this gap should only be used to represent the sequence ‘101’.

The byte shown in figure 2.6.1 appears as the first three bytes of the Address Mark.  For the Address Field, the fourth byte contains the value 0xFE and for the Data Field, the fourth byte contains the value 0xFB.  The fourth byte is used to distinguish between the two types of Address Mark.  Once the correct sequence of bytes has been detected it is then possible to remain synchronized with each bit and byte of the field.

The main purpose of the FDD controller is to read and write specific sectors.  When reading a sector the controller must first detect the Address Field Address Mark to determine which sector it is currently in.  Once in the correct sector the Data Field Address Mark must be detected to locate the data area.  When writing to the disk, the controller first detects the Address Field Address Mark (in the same way as a read) to determine the sector.  Once in the correct sector writing can begin.  So, before the controller can do anything it must first detect the two types of address mark in the MFM encoded data stream.  This is done by shifting the Basic MFM signal into a 32-bit shift register, clocked by DPLL_CLK; see figure 2.6.2.


[image: image18.wmf]DPLL

32 Bit Shift Register

BASIC_MFM

Serial IN

Parallel OUT


(Fig. 2.6.2) – Address Mark Shift Register

The 32-bit output from the shift register is then continually compared to four possible Address Mark values.  The reason for having four possible address mark values is best described by figure 2.6.3.


[image: image19.png]EASCF]

Shift Register Output

EASCI





(Fig 2.6.3) – Basic MFM Encoding Types

Figure 2.6.3 demonstrates that a FDD MFM signal can be encoded in two possible Basic MFM ways (BASIC_MFM 2 is the inverse of BASIC_MFM 1).    As a disk contains two types of Address Mark, a possible four combinations can appear at the output of the shift register.  Out of the four Address Mark bytes only the bottom two need be detected to determine its presence and type.

2.7 Cyclic Redundancy Check
At the end of each address and data field there is a 16-bit CRC (Cyclic Redundancy Check).  The CRC is applied to the four bytes of the fields Address Mark as well as the fields data.

The CRC works by applying a left shift and 3 XOR operations to produce a 16-bit output.  This is repeated for each bit of the data to be validated.  With each new bit the previous 16-bit output is fed back in.  The CRC can be thought of as having 2 inputs (16 bit CRC in and 1 data bit) and 1 output (16 bit CRC out).  The 16-bit CRC output is used to validate the data.  For the floppy disk’s CRC the 3 XOR operations are based on the polynomial of X16+X12+X5+X0.
The following pseudo code shows how the CRC can be coded:


CRC_OUT(0)
= DATA_IN XOR CRC_IN(15)

CRC_OUT(1)
= CRC_IN(0)

CRC_OUT(2)
= CRC_IN(1)

CRC_OUT(3)
= CRC_IN(2)

CRC_OUT(4)
= CRC_IN(3)

CRC_OUT(5)
= DATA_IN XOR CRC_IN(15) XOR CRC_IN(4)

CRC_OUT(6)
= CRC_IN(5)

CRC_OUT(7)
= CRC_IN(6)

CRC_OUT(8)
= CRC_IN(7)

CRC_OUT(9)
= CRC_IN(8)

CRC_OUT(10)
= CRC_IN(9)

CRC_OUT(11)
= CRC_IN(10)

CRC_OUT(12)
= DATA_IN XOR CRC_IN(15) XOR CRC_IN(11)

CRC_OUT(13)
= CRC_IN(12)

CRC_OUT(14)
= CRC_IN(13)

CRC_OUT(15)
= CRC_IN(14)

One question that arises is what should the 16-bit CRC input be for the first data bit?  In the case of the floppy disk the input is 0xFFFF, but different CRC implementations use different values.

Although the data going to and from the disk is serial, the controller handles it in an 8 bit parallel way.  For this reason, the serial CRC has been converted to parallel.  Converting the serial CRC to an 8 bit parallel CRC involves following trough each permutation.  To do this table 2.7.1 was created.  The three highlighted columns represent the three XOR operations of the CRC and shifting the CRC_IN value to left for each bit represents the shift operation..

	CRC_IN
	C15
	C14
	C13
	C12
	C11
	C10
	C9
	C8
	C7
	C6
	C5
	C4
	C3
	C2
	C1
	C0

	BIT 7
	C14
	C13
	C12
	C11
	C10
	C9
	C8
	C7
	C6
	C5
	C4
	C3
	C2
	C1
	C0
	C15

	BIT 6
	C13
	C12
	C11
	C10
	C9
	C8
	C7
	C6
	C5
	C4
	C3
	C2
	C1
	C0
	C15
	C14

	BIT 5
	C12
	C11
	C10
	C9
	C8
	C7
	C6
	C5
	C4
	C3
	C2
	C1
	C0
	C15
	C14
	C13

	BIT 4
	C11
	C10
	C9
	C8
	C7
	C6
	C5
	C4
	C3
	C2
	C1
	C0
	C15
	C14
	C13
	C12

	BIT 3
	C10
	C9
	C8
	C7
	C6
	C5
	C4
	C3
	C2
	C1
	C0
	C15
	C14
	C13
	C12
	C11

	BIT 2
	C9
	C8
	C7
	C6
	C5
	C4
	C3
	C2
	C1
	C0
	C15
	C14
	C13
	C12
	C11
	C10

	BIT 1
	C8
	C7
	C6
	C5
	C4
	C3
	C2
	C1
	C0
	C15
	C14
	C13
	C12
	C11
	C10
	C9

	BIT 0
	C7
	C6
	C5
	C4
	C3
	C2
	C1
	C0
	C15
	C14
	C13
	C12
	C11
	C10
	C9
	C8

	CRC_OUT
	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0


(Table 2.7.1) – Parallel CRC Table

To demonstrate how to use table 2.7.1 the following steps give an example of generating the VHDL code for CRC_OUT[3]:

1) Starting at CRC_OUT[3], BIT 0, you get the value C11.

2) A diagonal line is then drawn through all of the C11 values.

3) At BIT 3 the value C11 is XOR’ed (C11 xor BIT 3).

4) At BIT 7 the value C11 is XOR’ed again (C11 xor C15 xor BIT 7).

5) Converting this to VHDL you get the following code (DATA_IN represents BIT X):

CRC_OUT(3) <= CRC_IN(11) xor CRC_IN(15) xor DATA_IN(3) xor DATA_IN(7);

When using the table, care has to be taken to make sure all of the XOR operations are performed.  For example, the value C5, in row BIT 1 column 12, is XOR’ed by C9, but C9 has been previously XOR’ed by C13 and BIT 5.  

Therefore, the VHDL code for CRC_OUT[5] is:

CRC_OUT(5) <= CRC_IN(9) xor CRC_IN(3) xor CRC_IN(5) xor DATA_IN(5) xor DATA_IN(1);

The system calculates the CRC during the following operations:

· Reading the address field

· Reading the data field

· Writing the data field

If during a read operation, the pre-calculated CRC does not match the read CRC, the read is cancelled and the user is notified via a status register.

The CRC is vital in that it will detect any errors caused by the DPLL adjusting itself.  During normal operations the controller has never generated a CRC error while reading a sector.  However, when the controller is deliberately fed an incorrect CRC the error is detected correctly.  If an incorrect CRC is deliberately written to the disk the PC will display an error message.

3. The Disk Drive
This section gives a detailed description of the floppy disk drive’s interface.  The drive used is a standard 3.5-inch floppy disk drive as found in most PC’s.

The disk drive basically consists of 2 parts, a read / write head and a motor.  The read / write head can be moved to the next track or to the previous track and the motor causes the disk to spin under the read / write head.  When the disk is spinning the disk drive is either reading the MFM encoded data from the disk or writing MFM encoded data to it.

3.1 Physical Interface
The floppy disk drive has a 34-pin connector of which only 12 pins are used for input and output.  Of the 12 pins, 5 are used for output and 7 are used for input.  None of the pins are bidirectional.  The pin numbers and names are shown in table 3.1.1.

	Pin Num
	Description
	Pin Num
	Description
	Direction

	1
	NC
	2
	NC
	

	3
	NC
	4
	NC
	

	5
	NC
	6
	NC
	

	7
	GND
	8
	INDEX
	OUTPUT

	9
	GND
	10
	NC
	

	11
	GND
	12
	DRIVE SELECT 1
	INPUT

	13
	GND
	14
	NC
	

	15
	GND
	16
	MOTOR ON
	INPUT

	17
	GND
	18
	DIRECTION SELECT
	INPUT

	19
	GND
	20
	STEP
	INPUT

	21
	GND
	22
	WRITE DATA
	INPUT

	23
	GND
	24
	WRITE GATE
	INPUT

	25
	GND
	26
	TRACK 00
	OUTPUT

	27
	GND
	28
	WRITE PROTECT
	OUTPUT

	29
	GND
	30
	READ DATA
	OUTPUT

	31
	GND
	32
	SIDE ONE SELECT
	INPUT

	33
	GND
	34
	DISK CHANGE
	OUTPUT


(Table 3.1.1) – Drive Connector

The disk drive also has a 4-pin power connector of which only 2 of the pins are used.  The drive requires a power supply of 5V with a maximum current consumption of 1A (during a seek operation).

As the FPGA runs at 3.3V, some simple level shifting circuitry is required between itself and the disk drive.  The 5V signals of the disk drive are converted to 3.3V by an MC14050B hex buffer.  And the 3.3V of the FPGA are converted to 5V by a single 74HCT244 octal buffer.

3.2 Disk Drive Signals
A description of each input and output to the disk drive is given in this section.  Throughout this section a logic low is considered to be TRUE and logic high is considered to be FALSE.

For a more detailed description of the signals the TEAC Floppy Disk Drive specification should be referred to.

3.2.1 INDEX (output)

The INDEX signal goes from high to low to indicate the start of a track and then continues to pulse for each revolution of the disk; see figure 3.2.1.1.  The rising edge of the INDEX signal represents the start of a track.

[image: image20.png]3 Fro-em

157~ 203ms




(Fig. 3.2.1.1) INDEX timing

After examining the INDEX signal it has been found that is not accurate enough synchronise the controller.  Due to the Soft Sectored nature of the disk, the INDEX signal can appear at different locations.  The controller described in this report only uses the INDEX signal as a timeout e.g. if the correct sector cannot be found within a certain number of disk revolutions then give up.

It’s also worth noting that the INDEX signal is not generated by the Index Address Field on the disk, but by a small magnet and sensor on the disk drives stepper motor.

3.2.2 DRIVE SELECT 1 (input)
A logic low will select the drive and then all further inputs and outputs are considered valid.  When the drive is selected the LED on the front is illuminated.

3.2.3 MOTOR ON (input)
A logic low will turn the motor on.  The motor is only turned on when reading or writing and will reach its full speed of 300rpm after 480ms. 

3.2.4 STEP (input)
Each STEP pulse will cause the read / write head to move to the next track.  The direction the read / write head moves depends on the DIRECTION SELECT input.

[image: image21.png]EDDHSJ L

[
3ms (4ms direction change)




(Fig. 3.2.4.1) – STEP pulse timing

The time between the pulses should be 3ms, or 4ms if directly after a direction change.

3.2.5 DIRECTION SELECT (input)

The DIRECTION SELECT input  tells the read / write head which direction to move.  A logic low will cause the read / write head to move towards track 79 and logic high will cause the read / write head to move towards track 0.  The read / write head will only move during a STEP pulse.

3.2.6 WRITE DATA (input)

The WRITE DATA input is used to write MFM encoded data to the disk.  The data will only be written when WRITE GATE is low and WRITE PROTECT is false.

3.2.7 WRITE GATE (input)

When logic low the WRITE GATE input will cause any data on the disk to be erased.  This then allows the WRITE DATA input to write its data.

3.2.8 TRACK00 (output)

When the read / write head is on track zero the TRACK00 output will be a logic low.  This is the only positional information that the disk drive provides.  Once the read / write head is moved it is up to the controller to keep track of its position.

3.2.9 WRITE PROTECT (output)

When this signal is true the write protect tab of a disk is open and any writing to the disk is prevented.  This is implemented in the hardware of the disk drive and it is not possible to override this output from the controller.

3.2.10 READ DATA (output)
When the motor is on and the WRITE GATE input is false the MFM data from the disk is output via the READ DATA signal.

3.2.11 SIDE ONE SELECT (input)
When this signal is logic high the lower side (side zero) of the disk is selected.  When the signal is logic low the upper side (side one) of the disk is selected.

3.2.12 DISK CHANGE (output)
When this signal is logic low it indicates that a disk is in the disk drive.  When the disk is removed the signal goes to a logic high state.

This signal will only indicate the presence of a disk when a disk is inserted and a valid step pulse is received.  The only exception to this, is when the drive is first powered up with a disk in the disk drive.

3.3 Implementation

During development it was found that if the power to the disk drive was toggled, the read / write head could become unaligned.  When this happened, the TRACK00 signal would go low indicating that the read / write head was on track zero.  To correct this problem, when the controller is reset it moves the read / write head all the way to track 79 and then back to track 0.   This realigns the read / write head and causes the TRACK00 signal to function correctly.

4. FAT12

FAT12 is a standard floppy disk file-system developed by Microsoft.  Its structure and usage are well documented, which was one of the main reasons for choosing to support it.

4.1 Structure

As has been mentioned in previous sections, a floppy disk is made up of sides, tracks and sectors, and is addressed as such.  As the FAT12 file-system has no prior knowledge of the disks structure (e.g. the number of sectors per track) it views the disk as a series of clusters, numbered from zero to N, where N is the maximum.  In the case of FAT12, each cluster contains one sector, although different FAT implementations can contain more.  All future references to FAT12 will be in clusters.

The FAT12 file system is made up of five parts, the MBR (Master Boot Record), FAT1, FAT2, the root directory, and the data area.  Each of these parts is described in the following sections.

4.2 The Master Boot Record

The first cluster contains the MBR.  The MBR is written to the disk during a format and never changes (unless the disk is reformatted).  Figure 4.2.1 shows the contents of the MBR.

[image: image22.png]oooooooo
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
00000020
000000BO
000000C0
000000D0
00000DED
000000F0
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000130
00000120
000001B0
000001C0
000001D0
000001E0
000001F0

EB3C
02E0
0000
4D45
8ED1
384E
4820
2020
0844
6089
348
0072
6174
FB7D
EBO07
E1CD
3800
307D
0696
6603
andh
4852
D2F7
coce
8BF4
SEOB
BO4E
4044
0244
6573
6573
0000

904D
0040
0000
2020
ECFO
247D
2020
2020
4953
46FC
F7F3
3926
324E
B47D
00cp
16CD
72E8
c746
7DCB
461C
8246
5006
F691
0204
8256
4975
544C
5220
6973
7320
7461
0000

5344
OBFO
0000
2020
7BEE
2488
2044
2020
4B2E
8956
0146
382D
7409
8BFO
10EB
1926
SBEA
Fa29
EAD3
6688
[iliEE]
5364
F7F6
CCBS
240D
06F8
4452
6973
6820
616E
7274
0000

4F53
0900
2991
4641
DIBE
€199
4154
2020
4441
FEBS
FC11
7417
83c7
aC98
EFAQ
8B55
5624
7D8C
0000
D066
E4F7
0164
4287
0102
1361
C341
2020
206D
6572
7920
0DOA
0000

352E
1200
0895
5431
0020
EB3C
0000
0000
540D
2000
4EFE
60B1
2038
4074
FD7D
1452
BEOB
D989
200F
C1EA
E203
1091
CAF7
807E
6172
EBO0
2020
6973
726F
6B6S
0000
0000

3000
0200
C44E
3220
8ECD
0172
0000
0000
0E13
F7E6
61BF
OBBE
FB72
oc4s
EBE6
BOO1
7088
4EF2
BECE
10EB
46FC
8B46
7614
020E
0B40
0060
2020
7369
72FF
7920
0000
00AC

0201
0000
4F20
2020
FCED
0044
0020
4610
D18B
8BSE
0000
217D
E6EB
7413
ADFC
EEBO0
FCC7
894E
6688
SEOF
1356
1896
BAF2
7504
7501
6664
0DOA
GEG7
0DOA&
746F
0000
BFCC

o100
0000
4E41
3309
oo7c
4953
2020
98F7
7611
0803
EBE6
F326
DCAD
B40E
7DEB
00E8
46F0
FECE
46F8
BECE
FEEE
9233
BAES
B442
4203
00EB
4E54
FFOD
5072
2072
0000
55A8

Sy Lme A
v FATi2 3.
g i
BNS}S. ... < r.DIS
K DAT..

.DISK.DAT.
CFLVLL

H...F..N.a
T988-t. .
atZNt... ;.r.

3}

SoullB
VS..aar.@u.B.
~Tu...ALLLCE
.NTLDR

LDR is missing.
.Disk error...Pr
ess any key to r
estart.





(Fig. 4.2.1) – Master Boot Record

The controller contains no direct support for the MBR.  Should a user wish to read or write the MBR, they can do so with the read and write sector commands.

4.3 FAT 1 and FAT 2

Starting at cluster 2 is the first FAT (File Allocation Table).  Due to the importance of the FAT the disk maintains two identical copies.  Figures 4.3.1 and 4.3.2 show the start of both FAT’s..

[image: image23.png]00000200 FOFF FFO3 FOFF 0000 0000 0000 0000 0000
00000210 0000 0000 0000 0000 0000 0000 0000 0000
00000220 0000 0000 0000 0000 0000 0000 0000 0000
00000230 0000 0000 0000 0000 0000 0000 0000 0000





(Fig. 4.3.1) – File Allocation Table 1

[image: image24.png]00001400 FOFF FFO3 FOFF 0000 0000 0000 0000 0000
00001410 0000 0000 0000 0000 0000 0000 0000 0000
00001420 0000 0000 0000 0000 0000 0000 0000 0000
00001430 0000 0000 0000 0000 0000 0000 0000 0000





(Fig. 4.3.2) – File Allocation Table 2

Each is FAT is 9 clusters in size and the second FAT is located directly after the first FAT.

The FAT is responsible for maintaining the status of each individual cluster on the disk.  Because a large file can be spread over multiple clusters that are not necessarily next to each other, the FAT employs a linked list technique.  Each entry in the FAT is 12 bits in size and is encoded in little endian.  The location of each entry is directly related to a cluster number and the value of each entry acts a pointer to the next cluster.

To find the position of a clusters FAT entry the following formula is used (N is the cluster number):


FATOffset = N + (N / 2)

As each entry in the FAT is 12 bits, it is necessary to read the FATOffset byte and the byte directly after it.  Figure 4.3.3 shows the bytes that need to be read if the cluster number is 2 (the FAT has a zero based index).

[image: image25.png]00000200 FOFF FFO3 FOFF 0000 0000 0000 0000 0000
00000210 D000 0000 0000 0000 0000 0000 0000 0000
00000220 D000 0000 0000 0000 0000 0000 0000 0000
00000230 0000 0000 0000 0000 0000 0000 0000 0000





(Fig. 4.3.3) – The bytes in the FAT

Taking into account the little-endian encoding the bytes shown in figure 4.3.3 represent the value 0xF003.  To extract the 12 bit value the following pseudo code is used:


FATData = FAT[FATOffset]


If FATOffset is odd then



NextCluster = FATData & 0x0FFF


Else



NextCluster = FATData >> 4


End if

Therefore, with a FATOffset of 3 the bottom 12 bits of 0xF003 represent the next cluster number in the linked list.


0xF003 & 0x0FFF = 0x0003

The end of the linked list is identified by the value 0xFFF

As each entry in the FAT is 12 bits it is possible that a single entry begins in one sector and ends in another.  To detect this situation the following formula is used:


If(FATOffset == BytesPerSector – 1)

{

// The entry is spread over two sectors
}

To calculate which cluster a FAT entry starts in, the following formulas are used (taking into account the two FAT’s):


Cluster1 = FAT1_StartCluster + (FATOffset / BytesPerSector)

Cluster2 = FAT2_StartCluster + (FATOffset / BytesPerSector)

The offset within the cluster is calculated by:


ClusterOffset = FATOffset mod BytesPerSector

All of the complexity involved in handling the FAT is hidden from the user by the controller.  The user needs only supply a cluster number to read a value from the FAT or a cluster number and value to write to the FAT (both FAT’s are written to at the same time).

Three components have been developed to deal with the FAT.  The first component, rw_byte (figure 4.3.4) is used when reading or writing the FAT.  Its purpose is to simply read a single byte from the disk, or write a single byte.


[image: image26.wmf]MCLK

SIDE_IN

RD_BYTE

WR_BYTE

FDD_BSY

FDD_RDY

CRC_ERROR

SEEK_ERROR

WP_ERROR

SECTOR_IN[4:0]

TRACK_IN[7:0]

RAM_DO[7:0]

DATA_IN[7:0]

ADDR_IN[8:0]

SIDE_OUT

BSY

ERROR

RAM_CLK

RAM_WE

RD_SECT

WR_SECT

SECTOR_OUT[4:0]

RAM_DI[7:0]

DATA_OUT[7:0]

TRACK_OUT[7:0]

ADDR_OUT[8:0]

rw_byte


(Fig. 4.3.4) – rw_byte

The read_fat component, see figure 4.3.5, is responsible for reading a single 12-bit entry from the first FAT.  The entry to read is specified by the 12-bit input ENTRY.  The main purpose of the read_fat component is to convert the ENTRY into the sector number and offset.  The fact that the FAT value may be on two sectors is also taken into account.


[image: image27.wmf]BSY

ENTRY[11:0]

RD

DATA_IN[7:0]

FAT_OUT[11:0]

RAM_ADDR[8:0]

SECTOR[4:0]

SIDE

TRACK[7:0]

RD_BYTE

RW_BSY

EN

MCLK

read_fat


(Fig. 4.3.5) – read_fat

The write_fat component, see figure 4.3.6, is responsible for writing a new 12-bit value to both FAT’s.  The value is specified by FAT_VALUE and the location is specified by ENTRY.


[image: image28.wmf]BSY

ENTRY[11:0]

WR

DATA_IN[7:0]

DATA_OUT[7:0]

RAM_ADDR[8:0]

SECTOR[4:0]

SIDE

TRACK[7:0]

RD_BYTE

RW_BSY

EN

MCLK

write_fat

FAT_VALUE[11:0]

WR_BYTE


(Fig. 4.3.6) – write_fat

The i2c_manager component talks directly to the read_fat and write_fat components, which in turn talk to the rw_byte component.  The rw_byte component then talks directly to the disk drive controller.

4.4 Root Directory

Directly after the second FAT is the Root Directory.  Figure 4.4.1 shows the start of the Root Directory.

[image: image29.png]00002600
00002610
00002620
00002630
00002640

4449
0000
4649
7B2F
0000

534B
0000
4045
7B2F
0000

4E41
0000
2020
0000
0000

4D45
2853
2020
1153
0000

2020
TB2F
5458
TB2F
0000

2008
0000
5420
0200
0000

oooo
o000
1803
5802
0000

0000 DISKNAME
0000
1053 FILE
0000 z/z/
0000





(Fig. 4.4.1) – The Root Directory

The root directory is responsible for keeping track of which files and directories are located in the root of the disk.  Each entry in the root directory is 32 bytes in size and the root directory is 9 clusters in size.  Table 4.4.1 shows the fields in each 32-byte entry.

	Type
	Name
	Size

	BYTE
	Filename
	8

	BYTE
	Extension
	3

	BYTE
	Attributes
	1

	BYTE
	Reserved
	10

	WORD
	Time
	1

	WORD
	Date
	1

	WORD
	StartCluster
	1

	DWORD
	FileSize
	1


(Table 4.4.1) – Root Directory Entry

The attributes field can be decoded using table 4.4.2.

	Bit
	Mask
	Attribute

	0
	0x01
	Read Only

	1
	0x02
	Hidden

	2
	0x04
	System

	3
	0x08
	Volume Label

	4
	0x10
	Sub Directory

	5
	0x20
	Archive

	6
	0x40
	Unused

	7
	0x80
	Unused


(Table 4.4.2) – Attributes Bits

Figure 4.4.2 shows how the fields map onto an entry.

[image: image30.png]Fiename. Exension Attroutes Reserved

00002620 [543 4C45 2020 2020 [5458 54\2n\ 1603 1053 FILE

00002630 [7A2F 722F 0000 0153 ? EB02 0000 z/z/. SZ/ X.

Reserved Tme  Date StariCluster FieSize





(Fig. 4.4.2) – Directory Entry

The disk drive controller only provides support for reading and writing complete 32 byte entries.  The controller has no knowledge of the fields within the directory.

A single component has been developed, which converts a directory entry location to a side, track and sector number; see figure 4.4.3.  It also calculates the offset of the first byte of the directory entry within the sector.  This component is controlled by the i2c_manager and talks directly to the disk drive controller.


[image: image31.wmf]FDD_RDY

MCLK

FDD_BSY

ENTRY[7:0]

SET

WR_DIR

RAM_WE

SET_BSY

TRACK[7:0]

SIDE

SECTOR[7:0]

OFFSET[8:0]

WR_SECT

RD_SECT

set_directory


(Fig. 4.4.3) – set_directory

5. I2C

This part of the report gives a brief description of the I2C protocol, followed by a detailed account of the commands supported by the system.

Should a more detailed description of I2C be needed then the I2C specification should be referred to.

5.1 Overview

I2C is a two wire serial bus used to transfer relatively small amounts of data over short distances.  Of the two wires, one is allocated to the clock (SCL) and the other to the data (SDA).  Each of the 2 wires is bidirectional allowing for devices to act as transmitters and receivers.

The I2C protocol supports three different speeds, 100KHz, 400KHz, and 3.4MHz.  These speeds are the maximum speed the bus can run at.  Any I2C device can slow the bus down by holding SCL low (clock stretching).

Each I2C device is considered to be either a master or a slave.  A master is responsible for starting and stopping any transactions and as such generates all control and clock signals.  Each slave device only responds to a  masters command and must not interfere with other slaves.  To allow a master to identify a slave, each slave is assigned an address (either 7 or 10 bit).

5.2 I2C Protocol

All I2C transactions begin with a START condition and end with a STOP condition, both of which are generated by the master.  A START condition occurs when SDA goes from high to low, while SCL is high.  And similarly, a STOP condition occurs when SDA goes from low to high, while SCL is high.  At no other time should SDA change while SCL is high.

Once the master has generated a START, it sends a control byte.  The control byte is used to identify a slave as well as indicating if the master wants to read or write the slave.

The bytes that follow the control byte depends on the slave being addressed.  However, regardless of the type of slave or master, each byte is acknowledged by the receiver.  An ACK (acknowledge) is generated by the receiver holding SDA low for the bit following the end of the byte.  Should a receiver not want to acknowledge the byte it can leave SDA high, which causes a NACK.

Once a master has finished its transaction it generates a STOP.  If the master is transmitting it should in normal circumstances, generate the STOP after receiving the ACK from the slave.  However, if the master is receiving it should send a NACK after the final byte, followed by a STOP.  Should the master send an ACK, rather than a NACK, the slave will set itself up to send another byte.  If the first bit of that byte is a zero, the slave will hold SDA low, stopping the master from generating its STOP condition.

5.3 Implementation

The I2C part of the system is made up of two separate components, the i2c_slave and the i2c_manager.

The i2c_slave, see figure 5.3.1, is responsible for the following:

· Detecting a START

· Receiving a byte

· Transmitting a byte

· Receiving ACK / NACK’s

· Transmitting ACK / NACK’s

· Detecting a STOP

When a START is detected on the I2C bus the i2c_slave becomes active and receives a byte.  When the entire byte has been received it holds SCL low, causing the I2C master to stop transmitting.  The i2c_slave will hold SCL low until either the SEND or RECV input is asserted.  This effectively gives the system time to process its data.  This is a common technique used by most I2C devices.


[image: image32.wmf]SEND

ACK_IN

RECV

DATA_IN[7:0]

RST

MCLK

HOLDING

DATA_OUT[7:0]

BYTE_COUNT[9:0]

START

SCL

SDA

i2c_slave


(Fig. 5.3.1) – i2c_slave

The i2c_manager, see figure 5.3.2, is responsible for processing the commands received from the I2C bus.  To be able to process the commands the i2c_manager controls all of the major components of the system.  Section 5.4 gives the details of the commands supported by the i2c_manager.


[image: image33.wmf]RAM_DO[7:0]

RDY

BSY

CRC_ERROR

SEEK_ERROR

WP_ERROR

FAT_VALUE_IN[11:0]

DIR_OFFSET[7:0]

TRACK[7:0]

SIDE

WR_SECT

RD_SECT

SECTOR[4:0]

FAT_VALUE_OUT[11:0]

FAT_ENTRY[11:0]

DIR_ENTRY[7:0]

MEM_WE

RAM_CLK

RD_FAT

WR_FAT

SET_DIR

WR_DIR

RAM_DI[7:0]

MEM_ADDR[8:0]

i2c_manager

RST

MCLK

SCL

SDA

I2C_ADDR[2:0]


(Fig. 5.3.2) – i2c_manager
As has been mentioned previously in this report, the FPGA has been connected to the I2C bus of an 8-bit micro-controller.  Also connected to this bus is an I2C EEPROM.  During the development of the i2c_slave component, the micro-controller was programmed to constantly read and write bytes to the EEPROM.  The i2c_slave was then designed to first detect the START and STOP conditions between the EEPROM and the micro-controller, and then secondly to read the bytes from the I2C bus.  The bytes read by the i2c_slave where then displayed on the LED’s.  To develop the writing facilities in the i2c_slave, the micro-controller was setup to only receive bytes from the I2C bus, which where then output via the RS232 serial port.

5.4 Commands
The following sub-sections give the details of the commands supported by the disk drive controller.

The commands Read Sector, Write Data and Read Directory Entry all use a shared buffer within the controller.  As a result, if a command such as Read Sector is called directly after a Read Directory command, the directory data will be overwritten by the sector data.

No commands should be issued to the controller while the BSY bit in the status register is set.  The only exception to this is the Read Status command.  The controller will ignore any commands issued while the BSY bit is set.  The master should always read the status register before and after any commands.

5.4.1 Read Sector

The master instructs the controller to read a sector by specifying its side, track and sector number.  Once the sector has been read the master can use the Read Data command to view the contents.

Figure 5.4.1.1 shows the structure of the command.  The TRACK byte specifies a track number from 0 to 79.  The MSB of the SIDE / SECTOR byte specifies the side of the disk (1 = side zero, 0 = side one).  Bits 0 to 5 of the SIDE / SECTOR byte specify the sector number from 1 to 18.

[image: image34.wmf]0

0

0

A

2

A

1

1

A

0

1

A

C

K

A

C

K

0

0

0

1

1

1

1

1

A

C

K

P

A

C

K

S

X

X

S

T

A

R

T

S

T

O

P

CONTROL BYTE

COMMAND BYTE

TRACK

SIDE / SECTOR

BUS

ACTIVITY

MASTER

SDA LINE

BUS

ACTIVITY


(Fig. 5.4.1.1) – Read Sector

Once a read sector command has been issued, the BSY bit of the status register will go high.  The read is only complete when the BSY bit goes low.  Once the read is complete the status should be checked for CRC or SEEK errors.

5.4.2 Write Sector

The write sector command instructs the controller to write the contents of its data area to a sector.  The data area is written to using the Write Data command.  The sector is addressed in the same way as the Read Sector command.


[image: image35.wmf]0

0

0

A

2

A

1

1

A

0

0

A

C

K

A

C

K

0

0

0

1

1

1

1

1

A

C

K

P

A

C

K

S

X

X

S

T

A

R

T

S

T

O

P

CONTROL BYTE

COMMAND BYTE

TRACK

SIDE / SECTOR

BUS

ACTIVITY

MASTER

SDA LINE

BUS

ACTIVITY


(Fig. 5.4.1.2) – Write Sector

Once a write sector command has been issued, the BSY bit of the status register will go high.  The write is only complete when the BSY bit goes low.  Once the write is complete the status should be checked for SEEK and WRITE PROTECT errors.

5.4.3 Read Data

Once a Read Sector command is complete, the read data command is issued to read the contents.  The data is read out sequentially starting with byte zero.  If reads are issued after the last byte the address will roll over to zero.


[image: image36.wmf]0

0

0

A

2

A

1

1

A

0

1

A

C

K

A

C

K

1

1

1

1

0

0

0

0

A

C

K

S

S

T

A

R

T

CONTROL BYTE

COMMAND BYTE

DATA(n)

BUS

ACTIVITY

MASTER

SDA LINE

BUS

ACTIVITY

P

N

A

C

K

DATA(n+X)

DATA(n+1)

S

T

O

P


(Fig. 5.4.3.1) – Read Data

To terminate the command the master sends a NACK after the last byte, followed by a STOP.

Before the read data command is issued, the BSY bit of the status register should be checked to make sure it is low.  While the controller is busy, it has total control of the data area.

5.4.4 Write Data

The write data  command is used to write the contents of a sector to the controller.  Once all the data has been written, a write sector command is issued.

The data is written to the controller sequentially, starting from byte zero.  If a write is issued past the last byte the address will reset to zero.


[image: image37.wmf]S

T

A

R

T

0

0

0

A

2

A

1

1

A

0

0

A

C

K

A

C

K

1

1

1

1

0

0

0

0

A

C

K

S

CONTROL BYTE

COMMAND BYTE

DATA(n)

BUS

ACTIVITY

MASTER

SDA LINE

BUS

ACTIVITY

P

A

C

K

DATA(n+X)

DATA(n+1)

S

T

O

P


(Fig. 5.4.4.1) – Write Data

Before the write data command is issued, the BSY bit of the status register should be checked to make sure it is low.  While the controller is busy, it has total control of the data area.

5.4.5 Read FAT Entry

The master instructs the controller to read a single 12-bit entry from the first FAT by issuing a Read FAT Entry command.  The entry is specified by 2 bytes, high entry and low entry; see figure 5.4.5.1.  The top four bits of high entry are ignored.


[image: image38.wmf]0

0

0

A

2

A

1

1

A

0

1

A

C

K

A

C

K

0

0

0

1

0

0

1

1

A

C

K

P

A

C

K

S

X

S

T

A

R

T

S

T

O

P

CONTROL BYTE

COMMAND BYTE

HIGH ENTRY

LOW ENTRY

BUS

ACTIVITY

MASTER

SDA LINE

BUS

ACTIVITY

X

X

X


(Fig. 5.4.5.1) – Read FAT Entry

While the read operation is in progress the BSY bit of the status register will be set.  The read is only complete when the BSY bit is cleared.  The status register should be checked for CRC and SEEK errors.

Once the read is completed, the master should issue a Read FAT Value command to get the result.

5.4.6 Write FAT Entry
To write a new value to the first and second FAT, the master issues a Write FAT Entry command.  The entry location is specified via the high and low entry bytes.  The top four bits of high entry are ignored; see figure 5.4.6.1.


[image: image39.wmf]0

0

0

A

2

A

1

1

A

0

0

A

C

K

A

C

K

0

0

0

1

0

0

1

1

A

C

K

P

A

C

K

S

X

S

T

A

R

T

S

T

O

P

CONTROL BYTE

COMMAND BYTE

HIGH ENTRY

LOW ENTRY

BUS

ACTIVITY

MASTER

SDA LINE

BUS

ACTIVITY

X

X

X


(Fig. 5.4.6.1) – Write FAT Entry

The FAT value to write is specified by the Write FAT Value command.

While the write operation is in progress the BSY bit of the status register will be set.  The write is only complete when the BSY bit is cleared.  The status register should be checked for SEEK and WRITE PROTECT errors.

5.4.7 Read FAT Value

After a Read FAT Entry command has been completed, the master can read the value by issuing a Read FAT Value command.  The value is returned as the bottom 12 bits of high value and low value; see figure 5.4.7.1.


[image: image40.wmf]0

0

0

A

2

A

1

1

A

0

1

A

C

K

A

C

K

0

0

0

1

0

1

1

1

A

C

K

P

N

A

C

K

S

X

S

T

A

R

T

S

T

O

P

CONTROL BYTE

COMMAND BYTE

HIGH VALUE

LOW VALUE

BUS

ACTIVITY

MASTER

SDA LINE

BUS

ACTIVITY

X

X

X


(Fig. 5.4.7.1) – Read FAT Value

To terminate the command the master must send a NACK after the last byte, followed by a STOP.

The Read FAT Value command has no affect on the status register as the FAT value is buffered in the controller.

5.4.8 Write FAT Value

The value written by the Write FAT Entry command is set by the Write FAT Value command.  The bottom 12 bits of high value and low value determine the value.  The top 4 bits are ignored; see figure 5.4.8.1.

[image: image41.wmf]0

0

0

A

2

A

1

1

A

0

0

A

C

K

A

C

K

0

0

0

1

0

1

1

1

A

C

K

P

S

X

S

T

A

R

T

S

T

O

P

CONTROL BYTE

COMMAND BYTE

HIGH VALUE

LOW VALUE

BUS

ACTIVITY

MASTER

SDA LINE

BUS

ACTIVITY

X

X

X

A

C

K


(Fig. 5.4.8.1) – Write FAT Value

The Write FAT Value command has no affect on the status register as the FAT value is buffered in the controller.

5.4.9 Read Directory Entry

The master instructs the controller to read a single 32-byte directory entry from the disk.  Once the read is complete the directory entry is buffered in the controller.  To read the entry from the buffer, a Read Directory Value command should be issued.


[image: image42.wmf]0

0

0

A

2

A

1

1

A

0

1

A

C

K

A

C

K

1

0

0

0

1

0

0

0

A

C

K

P

S

S

T

A

R

T

S

T

O

P

CONTROL BYTE

COMMAND BYTE

ENTRY

BUS

ACTIVITY

MASTER

SDA LINE

BUS

ACTIVITY


(Fig. 5.4.9.1) – Read Directory Entry

While the read is in progress the BSY bit of the status register will be set.  The read is only completed when the BSY bit is cleared.  Once the read is complete the status register should be checked for CRC and SEEK errors.

5.4.10 Write Directory Entry

The master instructs the controller to write the currently buffered directory entry to the disk.  The location of the entry is specified by the Read Directory Entry command.


[image: image43.wmf]0

0

0

A

2

A

1

1

A

0

0

A

C

K

A

C

K

1

0

0

0

1

0

0

0

A

C

K

P

S

S

T

A

R

T

S

T

O

P

CONTROL BYTE

COMMAND BYTE

BUS

ACTIVITY

MASTER

SDA LINE

BUS

ACTIVITY


(Fig. 5.4.10.1) – Write Directory Entry

To write a particular directory entry the Read Directory Entry command must first be issued.  Once the read is complete issuing a Write Directory Value command can change the directory data.  The new directory is then written to the disk by the Write Directory Entry command.

While the write is in progress the BSY bit of the status register will be set.  The write is only completed when the BSY bit is cleared.  Once the write is complete the status register should be checked for SEEK and WRITE PROTECT errors.

5.4.11 Read Directory Value

The master can read the buffered directory entry via the Read Directory Value command.  The contents of the directory entry are read sequentialy, starting at byte zero.  Any reads pass the 32nd byte will return data buffered from previous commands.


[image: image44.wmf]0

0

0

A

2

A

1

1

A

0

1

A

C

K

A

C

K

A

C

K

S

S

T

A

R

T

CONTROL BYTE

COMMAND BYTE

VALUE(n)

BUS

ACTIVITY

MASTER

SDA LINE

BUS

ACTIVITY

P

N

A

C

K

VALUE(n+X)

VALUE(n+1)

1

0

1

0

1

1

0

0

S

T

O

P


(Fig. 5.4.11.1) – Read Directory Value

The master sending a NACK after the last byte, followed by a STOP, concludes the read.

Before issuing a Read Directory Value command a Read Directory Entry command should be issued.

The Read Directory Value command has no affect on the status register as the directory value is buffered in the controller.

5.4.12 Write Directory Value

The master can write data to the buffered directory entry by issuing a Write Directory Value command.  The data is written to the controller sequentially, starting at byte zero.  Any writes past the 32nd byte will be stored in the controller, but not written to the disk.  

The directory value is not written to the disk until a Write Directory Entry command is issued.


[image: image45.wmf]0

0

0

A

2

A

1

1

A

0

0

A

C

K

A

C

K

1

0

1

0

1

1

0

0

A

C

K

S

S

T

A

R

T

CONTROL BYTE

COMMAND BYTE

VALUE(n)

BUS

ACTIVITY

MASTER

SDA LINE

BUS

ACTIVITY

P

A

C

K

VALUE(n+X)

VALUE(n+1)

S

T

O

P


(Fig. 5.4.12.1) – Write Directory Value

The Write Directory Value command has no affect on the status register as the directory value is buffered in the controller.

5.4.13 Read Status

The master can read the status register by issuing a Read Status command; see figure 5.4.13.1.


[image: image46.wmf]0

0

0

A

2

A

1

1

A

0

1

A

C

K

A

C

K

0

0

1

1

0

1

1

0

S

S

T

A

R

T

CONTROL BYTE

COMMAND BYTE

STATUS

BUS

ACTIVITY

MASTER

SDA LINE

BUS

ACTIVITY

P

S

T

O

P

N

A

C

K


(Fig. 5.4.13.1) – Read Status

The status byte can be decoded using table 5.4.13.1.

	Bit
	Field

	7
	Reserved

	6
	Reserved

	5
	Reserved

	4
	WRITE_PROTECT_ERROR

	3
	SEEK_ERROR

	2
	CRC_ERROR

	1
	BSY

	0
	RDY


(Table. 5.4.13.1) – Status register bits

The status register should be checked before and after issuing any commands.  CRC, SEEK, and WRITE PROTECT errors are cleared if the next command is successful.

5.5 Interfacing
The I2C bus is designed for 5V devices.  As the FPGA runs at 3.3V, some simple level shifting circuitry is required; see figure 5.5.1.


[image: image47.wmf]g

s

d

g

d

s

10K

10K

10K

10K

FPGA

EEPROM

MICRO

CONTROLLER

SDA

SCL

SDA

SCL

V

DD

 = 3.3V

V

DD

 = 5V

148

150

5

6

18

23

BS108

BS108


(Fig. 5.5.1) - I2C Level Shifting Schematic
6. The Controller

At the heart of this project is the controller itself.  The controller connects directly to the disk drive and provides a set of command lines for the rest of the project to use; see figure 6.1.  For all of its complexity, the controller can only perform two operations, read a sector and write a sector.


[image: image48.wmf]RD_SECT

WR_SECT

RAM_CLK

RAM_WE

SECTOR[4:0]

TRACK[7:0]

SIDE

DATA_IN[7:0]

RAM_ADDR[8:0]

RDY

BSY

CRC_ERROR

SEEK_ERROR

WP_ERROR

DATA_OUT[7:0]

RST

MCLK

TRACK_00

INDEX

READ_DATA

WRITE_PROTECT

DISK_CHANGE

DRIVE_SELECT

MOTOR_ON

DIRECTION_SELECT

STEP

WRITE_GATE

WRITE_DATA

SIDE_ONE_SELECT

FDDController

I2C_ADDR[2:0]


(Fig. 6.1) – The controller

6.1 Development

The controller is made up of many sub-components that all work together.  The development of the components was done in the following three stages, wire-tapping the PC, stand-alone reading, and stand-alone writing.  Each of these stages is described in the following sub-sections.

6.1.1 Wire-tapping the PC

The first, and most important stage of the controller development was the wire-tapping stage.  The aim of this stage was to decode the raw data coming from the PC’s disk drive.  The reason for doing this was due to the fact that very little technical information could be found on designing disk drive controllers.  Wire-tapping the PC’s disk drive provided a good starting point for development as it allowed for components (e.g. the DPLL) to be developed and tested individually.

To view the data going to and from the PC’s disk drive a logic analyzer was used.  The type of logic analyzer was the inexpensive USB based ANT8 Logic Analyzer.  The logic analyzer has proven to be an invaluable resource during development, but does have the drawback of having a relatively simple trigger.  To overcome this the FPGA was used to generate the trigger.  In most cases this just involved the FPGA waiting for the INDEX signal from the disk drive to go high, and then it would count the number of edges from  the READ_DATA signal.  When a certain number of edges had been counted a pin was asserted, which would trigger the logic analyzer.  By increasing and decreasing the number of edges to count, it was possible to look at different parts of the disk. 

Once it was possible to view the raw data going to and from the disk drive, a method was needed to instruct the PC to read specific sectors.  This was done using the MS-DOS debug command; see figure 6.1.1.1.

[image: image49.png]INNT\System32\cmd.exe - debug -10) x|

icrosoft Windows 2000 [Uersion 5.00.21951
KC> Copyright 1985-2088 Microsoft Corp.

:\>debug

53-35 2E 30 0 02 61 01 08 .<.MSDOS5.0..
00-12 60 @2 0B 6D 00 08 00  ...@......
A9-32 89 D4 4E 4F 20 4E 41

41-54 31 32 20 20 20 33 C9
BS-08 20 3E C@ FC BD 80 7C
99-E8 3C 81 72 1C 83 EB 30
87-26 8 57 FC 75 B6 88 CA
73-EB 33 C9 8A 46 10 98 F7





(Fig. 6.1.1.1) – The MS-DOS debug command

In figure 6.1.1.1 the PC has been instructed to read the first sector of the floppy disk and copy its contents into memory.

By the end of the wire-tapping stage, the FPGA was able to synchronize itself with the MFM encoded data and detect the address marks.  Extracting bytes was then implemented, which allowed for components to be developed that read the Address and the Data Fields.

6.1.2 Standalone Reading

The aim of the second stage of the controller development was to disconnect the floppy disk drive from the PC and connect it directly to the FPGA.  This involved designing the initial controller, excluding writing capabilities.

To test the controller a second component was developed, which would issue the controller with read operations in a similar way as a test bench.  The results of the reads where then displayed on LED’s.  The use of a second component to test individual parts of the project has been used throughout the project.

6.1.3 Standalone Writing

The final stage of the controller was to add the writing capabilities.  By this stage of development the understanding of the disk drive and its disk was a lot clearer and the components that were already in place where known to work.

Before any writing could take place, a component was needed to calculate the CRC.  As the read components had already been developed, it was possible to read the contents of address and data fields, along with there CRC’s, and output the data via LED’s.  This data then made up the test data for the newly developed CRC component.  Once the CRC component was found to work correctly it was added to the controller.  This then allowed for the development of the writing components.

One of the biggest problems encountered with the writing was fault finding.  When the writing was first implemented, the controller was able to write data to the disk and then read it back.  However, the PC was not able to read the same data, and further to this, it could not reformat the disk (meaning a new disk was needed for every write test).  At this stage the only feedback from the PC was the error message ‘The disk in drive a: is not formatted’.  Using the logic analyzer to find the cause of the faults proved troublesome due to its small number of samples (3072), which compared to the length of the write signal, is tiny.  In the end the faults where found by using the ModelSim simulator in conjunction with the logic analyzer.

Once the writing had been implemented the controller was complete.

6.2 Reading and Writing
The controller contains a single 512-byte RAM module, which is used to store individual sectors.  When the controller reads a sector, it writes it to the RAM and when the controller writes a sector, it reads it from the RAM.  While the controller is in a busy state it has total control of the RAM.  However, when the controller is not busy, any external components (e.g. the i2c_manager) have control of the RAM.

The location to read or write is specified by the inputs SIDE, TRACK, and SECTOR.  The SIDE input is connected directly to the disk drives SIDE ONE SELECT input.  The TRACK signal is constantly compared to the controllers own internal track pointer.  When the internal pointer is different to the TRACK input, the read / write head is moved appropriately.  Whenever reading or writing, the SECTOR input is compared against the sector byte in the Address Field Address Mark.

When the external RD_SECT signal goes high the controller sets the disk drive up for reading and starts the motor.  The controller then constantly scans the raw MFM data stream coming from the disk drive for the Address Field Address Mark.  When an Address Field Address Mark is found the controller reads the data, which includes the current sector number and the CRC.  If the CRC is correct and the sector number matches the requested sector number (the SECTOR input) then the controller waits for the next Data Field Address Mark.  When the Data Field Address Mark is detected, the controller reads 512-bytes, which make up the data area, and then reads the 2-byte CRC.  The 512-bytes of the data area are stored in the RAM and the status register is updated with the result of comparing the pre-calculated CRC with the read CRC.  The read is then complete.

Writing to the disk begins when the WR_SECT input goes high.  The write starts in the same way as a read, with the controller setting the disk drive up for reading and then waiting for Address Field Address Mark.  When the correct Address Field Address Mark is found the controller waits until the end of the Address Field.  At this point the read / write head is in the gap between the Data Field and the Address Field.  The controller then starts writing its own gap values to the disk.  At the end of the gap period the controller writes the SYNC bytes, then its own Data Field Address Mark followed by the contents of the RAM.  Finally, the controller writes a 16-bit CRC to the disk, completing the write.  At first it would seem better to detect the Data Field Address Mark and then start writing the data.  However, the controller that writes the data area should also write the SYNC bytes. This then guarantees that the DPLL can synchronise with the data.  A PC’s disk drive has been checked, and it writes in the same way.

7. Testing

To test the complete system an 8-bit micro-controller (Microchip PIC16F874) receives commands from a PC via the RS232 serial port.  The RS232 commands are then converted to I2C commands for the disk drive controller.  The micro-controller then sends the results of the I2C commands back to the PC for analysis.  All results are displayed as hexadecimal strings.  The only connection between the micro-controller and the disk drive controller are the 2 wires of the I2C bus.

The MS-DOS debug command is used to read the contents of individual disk sectors from a PC’s disk drive.  The output is then checked against the micro-controllers output to make sure the results are correct.  As well as the debug command, a logic analyzer was also used on the I2C signals to confirm that the disk drive controller was working correctly.

It was decided that all of the test code would be implemented within the micro-controller and the PC would effectively act as a dumb terminal.  Keeping the PIC as simple as possible and putting all of the functionality in a C++ Windows based GUI application at first seems the more logical approach, but it was decided against as it would create a third set of source code that would need to be maintained.  Having to find the cause of errors would involve having to search through 3 sets’s of source code, which are all written in different languages.

When the micro-controller is reset, which is a separate reset to the disk drive controller, the menu shown in figure 7.1 is displayed in HyperTerminal.

[image: image50.png]Port2 - HyperTerminal

Fle Edt Vew Cal Transfer Help

~=lolx|

D] 5(5| oln| &

I

RD
WR
RD
WR
RD
RD
WR
WR
RD
WR
RD
WR

S DD D B~y Do

Track :
Side / Sector :

IDC Menu

sector
sector
data

data

FAT Entry
FAT Value
FAT Entry
FAT Value
Dir Entry
Dir Entry
Dir Value
Dir Value

Status

Track

Side / Sector
Refresh

0x00

0x81_

(Connected 0:00:35 v

9600 811

5RO

[EENT

[Ceptine

[Pint echn

N KT





(Fig. 7.1) – Micro-controller Menu

As can be seen from figure 7.1 all the commands supported by the disk drive controller are accessible from the micro-controllers menu.

7.1 Test Results

The following sub-sections demonstrate the results of individual tests.  Each sub-section is merely a demonstration of the working system.  Since the development of the first component, testing has been taking place on a regular basis.  LED’s have been used for reporting the status of the system and signals have been monitored with a logic analyzer.  Documenting all test results would fill this report up many times over and would serve no real purpose.

The MS-DOS debug command restricts the size of the window it uses.  This has resulted in some of the following debug screen shots not displaying an entire sector.  However, the screen shots are sufficient to demonstrate that the correct data has been read.  During testing the contents of the entire sector where checked, not just the top or bottom parts.  The debug command has the capability to write its data to a file, which can then be checked using a hex-editor, this feature was used on a regular basis.

7.1.1 Reading a sector

In the following demonstration the first sector of the root directory has been read by the PC with the result being displayed in debug, and then by the disk drive controller with the results being shown in HyperTerminal.  Figures 7.1.1.1 and 7.1.1.2 show the results.

[image: image51.png]~=lolx|

Flo_£dt Viow ol Tinstr Hebp
sEEEEEE

Track : 0x08
Side / Sector : Bxd2

(Connected 0:48:33 v 9600 811 M





(Fig. 7.1.1.1) – The sector read by the FPGA

[image: image52.png]85-79
20-54
B8-79
20-54
B6-79
20-54
69-70
20-54
21-79
20-54
65-79
20-54
64-79
20-54
8B-F4
20-54
00-F4

ihsicis iR
.8.0..5.yb.
TESTCRZ TRT
.8.0..0.y0.
TESTCRS TRT
8.0, % b,
TESTRL TXT
.8.0... 520
TESTCRA TxT .
8.8 .qud

TESTCRS 18T .
8.0, cyd

TESTCRS TXT

.8.0...dyd.

igSTied xi i
0.8...... <

6%





(Fig. 7.1.1.2) – The sector read by the PC

7.1.2 Writing a sector

To demonstrate writing, sector 1 (the MBR) has been copied to sector 2.  Before writing to the second sector the first five bytes of the MBR were changed to ‘CRAIG.

Figure 7.1.2.1 shows the first 128 bytes of sector 1 and sector 2 after the write operation.

[image: image53.png]INNT\System3:

cmd.exe - debug

=lolx|

53-35
00-12
30-38
41-54
B8-08
99-E8
27-26
73-EB

53-35
00-12
30-38
41-54
B8-08
99-E8
27-26
73-EB

.<.MSDOS5.@. .
@ N





(Fig. 7.1.2.1) – The results of writing a sector

7.1.3 Reading a directory
Reading the second directory entry from debug reveals that the disk contains a file called backup.txt; see figure 7.1.3.1.

[image: image54.png]/INNT\System32\cmd.exe -10) x|

q

Odir at
Uolume in drive A is DEMODISK
Uolume Serial Number is P4FA-3B38

Directory of A:\

3/,28/2004 88:33p 4,847 backup. txt
1 File<s> 4,847 bytes
@ Dircs> 1.292]288 bytes free

INY





(Fig. 7.1.3.1) – Second directory entry read by the PC

Reading the same directory entry from the controller reveals the same results; see figure 7.1.3.2.

[image: image55.png]Fle Edt

View

Call_Transfer

Help

~=lolx|

D] 5(5| oln| &

R

R
=
i

Track

sector
sector
data
data

FAx
FAT
FAT
FAT
Dir
Dir
Dir
Dir

Status
Track

Side /
Refresh

Entry
Ualue
Entry
Ualue
Entry
Entry
Value
Value

Sector

Side / Sector : Bx81
DIR Entry @ Ox81

42 41 43 4B 55 50 20 20 54 58 54 20 18 96 FB 66
97 38 97 30 0@ 08 25 A4 7C 30 45 01 EF 12 00 08

(Connected D:38:21

v

9600 811

5RO

o

[

[Ceptine

[Pint echn

N KT





(Fig. 7.1.3.2) – Second directory entry read by the controller

7.1.4 Writing to a directory
The directory entry from section 7.1.3 (Reading a directory) is now changed from ‘backup.txt’ to ‘craig.txt’; see figure 7.1.4.1.

[image: image56.png]Fle Edt Vew Cal Transfer Help

~=lolx|

D] 5(5| oln| &

RD sector

R sector

RD data

R data

RD FAT Entry

RD FAT Ualue

R FAT Entry

R FAT Ualue
Dir Entry

UR Dir Entry

RD Dir Ualue

R Dir Ualue

Status

Track

Side / Sector

Refresh

R
=
i

Track : 0x08
Side / Sector : Bx81
DIR Entry : @x81
Value : CRAIG

STATUS : @xB1_

(Connected 1113:56 v 9600 811

5RO

o

[

[Ceptine

[Pint echn

N KT





(Fig. 7.1.4.1) – Writing to the second directory entry

Reading the disk from the PC after the change, reveals the renamed file; see figure 7.1.4.2.

[image: image57.png]/INNTSystem32\cmd.exe

=lolx|

Odir at
Uolume in drive A is DEMODISK
Uolume Serial Number is P4FA-3B38

Directory of A:\

3/,28/2004 88:33p 4,847 backup. txt
1 File<s> 4,847 bytes
@ Dircs> 1.292]288 bytes free
Odir at

Uolume in drive A is DEMODISK
Uolume Serial Number is P4FA-3B38

Directory of A:\

3/,28/2004 88:33p 4,847 craig.txt
1 File<s> 4,847 bytes
@ Dircs> 1.292]288 bytes free

10>





(Fig. 7.1.4.2) – The PC reading the updated directory entry

7.1.5 Reading a FAT entry

Reading the 5th entry the first FAT returns a value of 0x0006; see figure 7.1.5.1.
[image: image58.png]Fle Edt Vew Cal Transfer Help

~=lolx|

D] 5(5| oln| &

UR sector

RD data

R data

RD FAT Entry

RD FAT Ualue

R FAT Entry

R FAT Ualue
Dir Entry

UR Dir Entry

RD Dir Ualue

R Dir Ualue

Status

Track

Side / Sector

Refresh

SrreEAE BN AN
=
i

Track : 0x08
Side / Sector : Bx81
DIR Entry : @x81
Value : CRAIG

STATUS : @xai
FAT Entry : 0x0005
FAT Ualue : 0x0806_

(Connected 1:25:38 v PeonaN1  [scROLL

o

[

[Ceptine

[Pint echn

N KT





(Fig. 7.1.5.1) – Reading the 5th FAT Entry from the controller

Displaying the start of the FAT using debug it is possible to confirm the FAT value for 5th entry is 0x0006 (see the FAT12 section for details on decoding the FAT); see figure 7.1.5.2.

[image: image59.png]INNT\System32\cmd.exe - debug -10) x|





(Fig. 7.1.5.2) – Reading the FAT from the PC

7.1.6 Writing a FAT entry

Figure 7.1.6.1 shows the controller overwriting the 5th FAT entry with the value 0x0123 (note only the bottom 12 bits are used).

[image: image60.png]Fle Edt Vew Cal Transfer Help

~=lolx|

D] 5(5| oln| &

TDC Henu

RD sector

R sector

RD data

R data

RD FAT Entry

RD FAT Ualue

R FAT Entry

R FAT Ualue
Dir Entry

UR Dir Entry

RD Dir Ualue

R Dir Ualue

Status

Track

Side / Sector

Refresh

R
=
i

Track : 0x08
Side / Sector : Bx81
FAT Ualue : 00123

FAT Encry : 80685

(Connected 1:39:10 v 9600 811

5RO

o

[

[Ceptine

[Pint echn

N KT





(Fig. 7.1.6.1) – The controller writing to the FAT

After the controller has finished, both FAT’s are read from the PC; see figure 7.1.6.2.  It is possible to see that the controller wrote to both FAT’s correctly.

[image: image61.png]INNT\System32\cmd.exe - debug -10) x|





(Fig. 7.1.6.2) – Reading both FAT’s from the PC

8. Project Review

This section of the report carries out a review of the final project.

8.1 Final Outcome

The final results of the project show it can perform all of the requirements without error.  For this reason, the project is considered a success.

The time allocated to the design and implementation of the project was organised well.  A good balance was found between research, design and implementation, which is demonstrated by the project meeting all of its requirements within the deadline.  Throughout the project problems such as coding errors and lack of detailed information have occurred, as they do in all projects, but the approach taken to the project has not allowed such problems to ruin the final outcome.

The time allocated to this report could have been organised better.  In the early stages of the project this report was being updated on a regular basis.  However, midway through the project the report was updated on a less regular basis.

8.2 Future Improvements

As the system can perform all of the initial requirements, very little can be added to its functionality.  Given more time the VHDL code could no doubt be optimised in terms of size.

8.3 Lessons Learned

The technique of wire-tapping the PC’s disk drive allowed for the early components of the system to be designed and tested in a quick and reliable way.  From the start, all the major components of the system where designed as individual stand-alone units, and tested as such.  Doing this allowed for faults to be easily identifiable.  Initially some of the details of the disk drive and disk were quite vague, but by connecting the system to the PC’s disk drive the development could progress, rather than coming to a stand-still.

When the individual components of the system where put together, they went together with very few errors.  Connecting the disk drive controller to the I2C and FAT12 components took less than 30 minutes (that includes finding and fixing bugs).  Connecting the micro-controller to the FPGA and then sending it commands from the PC was completed in the same day.  The reason for such quick development at the end was down to the slow methodical work carried out in the early stages of the project.

8.4 How would it be done differently

If the project were to be started again then the file system support would be taken out of the FPGA and implemented within a C library.  If a C library were to be used then a micro-controller with a free C compiler would also have been chosen.  Without the file system support more time could have been allocated to optimising the VHDL code and to this report.

Bibliography

I2C Specification

Application Note 505

TEAC Floppy Disk Drive Specification

MFM Website

Appendix A – VHDL Source

This appendix contains all of the VHDL source code for the system.

NOTE : Due to the font size and page layout some of the VHDL code is not aligned correctly.  While the code is in a normal text editor the code is aligned correctly.
The VHDL files in this appendix are:

· idc_top.vhd

· fddcontroller.vhd

· byte_counter.vhd

· clock_divider.vhd

· crc.vhd

· dpll.vhd

· index_counter.vhd

· init_controller.vhd

· mfm_encoder.vhd

· mfm_to_basic.vhd

· read_address_field.vhd

· read_data_field.vhd

· shift_32.vhd

· step_controller.vhd

· synchronizer.vhd

· synchronizer.vhd

· write_data_field.vhd

· i2c_manager.vhd

· i2c_slave.vhd

· read_fat.vhd

· rw_byte.vhd

· set_directory.vhd

· write_fat.vhd

Figure A.1 shows how the files are organised in the project.

[image: image62.png]Sources in Project

a
&€ 7025300 6pa208XST VHDL
5 [9) ide_top (de_top vh)
=9 fddeontoler (FODContoler.vhd)
[9) byte_counter opte_courter vhe)
) cock_ivider (clock_dividervhd)
[ o fero.vhd)
[9) dplcpl )
[ indes_counter findes_courter.vhe)
) iit_contalle frit_coriroler vhe)
[9) mim_encoder mfm_encoder vhd)
[ mim_to_basc (mim_to_basicvhel
[9) read_adless_fild (ead_adless_fisdvhe)
[ resd_data_fild (reac_deta_fekdvh)
[9) shif_32 fhit_32.vhe
[9) step_contoler (step_contoler vhd)
) synchiarizer syrctrorizer vhd)
) fifiop fiptiop. v
[ wite_data.fied wite_deta_fieldvhe)
5 [#) 25_manager (2_managet vhd)
5[ 25.slave i20_slave.vhd)
5[ synchionizer (smchionizervhe)
) fifiop (iptiop. i
tead_fat f1eadfat.vhdl

jul
) m_byte (m_byte-vha)
@
@

E

sel_diectoy (set_diector vhd)
wite_fat [wite_fat vhd)





(Fig. A.1) – Project Layout

--------------------------------------------------------------------------

-- FILENAME : idc_top.vhd

--

-- The top level file of the system.  See the individual components for

-- descriptions.

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 10 April 2004

-- TAB SETTING  : 4

-- RESET        : Async (active low)

-- CLOCK        : 32MHz (clock dependent)

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity idc_top is

    port (  RST                  : in std_logic;

            MCLK                 : in std_logic;

            TRACK_00             : in std_logic;

            INDEX                : in std_logic;

            READ_DATA            : in std_logic;

            WRITE_PROTECT        : in std_logic;

            DISK_CHANGE          : in std_logic;

            I2C_ADDR             : in std_logic_vector(2 downto 0);

            DRIVE_SELECT         : out std_logic;

            MOTOR_ON             : out std_logic;

            DIRECTION_SELECT     : out std_logic;

            STEP                 : out std_logic;

            WRITE_GATE           : out std_logic;

            WRITE_DATA           : out std_logic;

            SIDE_ONE_SELECT      : out std_logic;

            SDA                  : inout std_logic;

            SCL                  : inout std_logic

         );

end idc_top;

architecture idc_top_arch of idc_top is

   component fddcontroller

   port(

      RST                  : in std_logic;

      MCLK                 : in std_logic;

      TRACK_00             : in std_logic;

      INDEX                : in std_logic;

      READ_DATA            : in std_logic;

      WRITE_PROTECT        : in std_logic;

      DISK_CHANGE          : in std_logic;

      RD_SECT              : in std_logic;

      WR_SECT              : in std_logic;

      MEM_CLK              : in std_logic;

      MEM_WE               : in std_logic;

      SECTOR               : in std_logic_vector(4 downto 0);

      TRACK                : in std_logic_vector(7 downto 0);

      SIDE                 : in std_logic;

      DATA_IN              : in std_logic_vector(7 downto 0);

      ADDR                 : in std_logic_vector(8 downto 0);          

      DRIVE_SELECT         : out std_logic;

      MOTOR_ON             : out std_logic;

      DIRECTION_SELECT     : out std_logic;

      STEP                 : out std_logic;

      WRITE_GATE           : out std_logic;

      WRITE_DATA           : out std_logic;

      SIDE_ONE_SELECT      : out std_logic;

      RDY                  : out std_logic;

      BSY                  : out std_logic;

      CRC_ERROR            : out std_logic;

      SEEK_ERROR           : out std_logic;

      WP_ERROR             : out std_logic;

      DATA_OUT             : out std_logic_vector(7 downto 0)

      );

   end component;

   component rw_byte

   port(

      MCLK                 : in std_logic;

      SIDE_IN              : in std_logic;

      RD_BYTE              : in std_logic;

      WR_BYTE              : in std_logic;

      FDD_BSY              : in std_logic;

      FDD_RDY              : in std_logic;

      CRC_ERROR            : in std_logic;

      SEEK_ERROR           : in std_logic;

      WP_ERROR             : in std_logic;

      SECTOR_IN            : in std_logic_vector(4 downto 0);

      TRACK_IN             : in std_logic_vector(7 downto 0);

      RAM_DO               : in std_logic_vector(7 downto 0);

      DATA_IN              : in std_logic_vector(7 downto 0);

      ADDR_IN              : in std_logic_vector(8 downto 0);          

      SIDE_OUT             : out std_logic;

      BSY                  : out std_logic;

      ERROR                : out std_logic;

      RAM_CLK              : out std_logic;

      RAM_WE               : out std_logic;

      RD_SECT              : out std_logic;

      WR_SECT              : out std_logic;

      SECTOR_OUT           : out std_logic_vector(4 downto 0);

      RAM_DI               : out std_logic_vector(7 downto 0);

      DATA_OUT             : out std_logic_vector(7 downto 0);

      TRACK_OUT            : out std_logic_vector(7 downto 0);

      ADDR_OUT             : out std_logic_vector(8 downto 0)

      );

   end component;

   component read_fat

   port(

      EN                   : in std_logic;

      MCLK                 : in std_logic;

      ENTRY                : in std_logic_vector(11 downto 0);

      RD                   : in std_logic;

      DATA_IN              : in std_logic_vector(7 downto 0);

      RW_BSY               : in std_logic;          

      BSY                  : out std_logic;

      FAT_OUT              : out std_logic_vector(11 downto 0);

      RAM_ADDR             : out std_logic_vector(8 downto 0);

      SECTOR               : out std_logic_vector(4 downto 0);

      SIDE                 : out std_logic;

      TRACK                : out std_logic_vector(7 downto 0);

      RD_BYTE              : out std_logic

      );

   end component;

   component write_fat

   port(

      EN                   : in std_logic;

      MCLK                 : in std_logic;

      WR                   : in std_logic;

      RW_BSY               : in std_logic;

      DATA_IN              : in std_logic_vector(7 downto 0);

      ENTRY                : in std_logic_vector(11 downto 0);

      FAT_VALUE            : in std_logic_vector(11 downto 0);          

      RD_BYTE              : out std_logic;

      WR_BYTE              : out std_logic;

      SIDE                 : out std_logic;

      BSY                  : out std_logic;

      SECTOR               : out std_logic_vector(4 downto 0);

      TRACK                : out std_logic_vector(7 downto 0);

      DATA_OUT             : out std_logic_vector(7 downto 0);

      RAM_ADDR             : out std_logic_vector(8 downto 0)

      );

   end component;

   component i2c_manager

   port(

      RST                  : in std_logic;

      MCLK                 : in std_logic;

      RAM_DO               : in std_logic_vector(7 downto 0);

      RDY                  : in std_logic;

      BSY                  : in std_logic;

      CRC_ERROR            : in std_logic;

      SEEK_ERROR           : in std_logic;

      WP_ERROR             : in std_logic;

      FAT_VALUE_IN         : in std_logic_vector(11 downto 0);    

      DIR_OFFSET           : in std_logic_vector(8 downto 0);

      I2C_ADDR             : in std_logic_vector(2 downto 0);

      SCL                  : inout std_logic;

      SDA                  : inout std_logic;      

      TRACK                : out std_logic_vector(7 downto 0);

      SIDE                 : out std_logic;

      WR_SECT              : out std_logic;

      RD_SECT              : out std_logic;

      SECTOR               : out std_logic_vector(4 downto 0);

      FAT_VALUE_OUT        : out std_logic_vector(11 downto 0);

      FAT_ENTRY            : out std_logic_vector(11 downto 0);

      DIR_ENTRY            : out std_logic_vector(7 downto 0);

      MEM_WE               : out std_logic;

      RAM_CLK              : out std_logic;

      RD_FAT               : out std_logic;

      WR_FAT               : out std_logic;

      SET_DIR              : out std_logic;

      WR_DIR               : out std_logic;

      RAM_DI               : out std_logic_vector(7 downto 0);

      MEM_ADDR             : out std_logic_vector(8 downto 0)

      );

   end component;

   component set_directory

   port(

      FDD_RDY              : in std_logic;

      MCLK                 : in std_logic;

      FDD_BSY              : in std_logic;

      ENTRY                : in std_logic_vector(7 downto 0);

      SET                  : in std_logic;  

      WR_DIR               : in std_logic;

      RAM_WE               : out std_logic;  

      SET_BSY              : out std_logic;

      TRACK                : out std_logic_vector(7 downto 0);

      SIDE                 : out std_logic;

      SECTOR               : out std_logic_vector(4 downto 0);

      OFFSET               : out std_logic_vector(8 downto 0);

      WR_SECT              : out std_logic;

      RD_SECT              : out std_logic

      );

   end component;

   signal i2c_man_track          : std_logic_vector(7 downto 0);

   signal i2c_man_side           : std_logic;

   signal i2c_man_wr_sect        : std_logic;

   signal i2c_man_rd_sect        : std_logic;

   signal i2c_man_sector         : std_logic_vector(4 downto 0);

   signal i2c_man_fat_value_out  : std_logic_vector(11 downto 0);

   signal i2c_man_fat_entry      : std_logic_vector(11 downto 0);

   signal i2c_man_dir_entry      : std_logic_vector(7 downto 0);

   signal i2c_man_ram_we         : std_logic;

   signal i2c_man_wr_dir         : std_logic;

   signal i2c_man_ram_clk        : std_logic;

   signal i2c_man_ram_addr       : std_logic_vector(8 downto 0);

   signal i2c_man_ram_di         : std_logic_vector(7 downto 0);

   signal i2c_man_set_dir        : std_logic;

   signal wr_fat_wr              : std_logic;

   signal wr_fat_rd_byte         : std_logic;

   signal wr_fat_wr_byte         : std_logic;

   signal wr_fat_side            : std_logic;

   signal wr_fat_bsy             : std_logic;

   signal wr_fat_sector          : std_logic_vector(4 downto 0);

   signal wr_fat_track           : std_logic_vector(7 downto 0);

   signal wr_fat_ram_addr        : std_logic_vector(8 downto 0);

   signal rd_fat_bsy             : std_logic;

   signal rd_fat_rd              : std_logic;

   signal rd_fat_fat_out         : std_logic_vector(11 downto 0);

   signal rd_fat_ram_addr        : std_logic_vector(8 downto 0);

   signal rd_fat_sector          : std_logic_vector(4 downto 0);

   signal rd_fat_side            : std_logic;

   signal rd_fat_track           : std_logic_vector(7 downto 0);

   signal rd_fat_rd_byte         : std_logic;

   signal rw_byte_side_in        : std_logic;

   signal rw_byte_rd_byte        : std_logic;

   signal rw_byte_wr_byte        : std_logic;

   signal rw_byte_sector_in      : std_logic_vector(4 downto 0);

   signal rw_byte_track_in       : std_logic_vector(7 downto 0);

   signal rw_byte_data_in        : std_logic_vector(7 downto 0);

   signal rw_byte_addr_in        : std_logic_vector(8 downto 0);

   signal rw_byte_side_out       : std_logic;

   signal rw_byte_bsy            : std_logic;

   signal rw_byte_error          : std_logic;

   signal rw_byte_ram_clk        : std_logic;

   signal rw_byte_ram_we         : std_logic;

   signal rw_byte_rd_sect        : std_logic;

   signal rw_byte_wr_sect        : std_logic;

   signal rw_byte_sector_out     : std_logic_vector(4 downto 0);

   signal rw_byte_data_out       : std_logic_vector(7 downto 0);

   signal rw_byte_track_out      : std_logic_vector(7 downto 0);

   signal rw_byte_addr_out       : std_logic_vector(8 downto 0);

   signal rw_byte_ram_di         : std_logic_vector(7 downto 0);

   signal fdd_rd_sect            : std_logic;

   signal fdd_wr_sect            : std_logic;

   signal fdd_ram_clk            : std_logic;

   signal fdd_ram_we             : std_logic;

   signal fdd_sector             : std_logic_vector(4 downto 0);

   signal fdd_track              : std_logic_vector(7 downto 0);

   signal fdd_side               : std_logic;

   signal fdd_data_in            : std_logic_vector(7 downto 0);

   signal fdd_ram_addr           : std_logic_vector(8 downto 0);

   signal fdd_rdy                : std_logic;

   signal fdd_bsy                : std_logic;

   signal fdd_crc_error          : std_logic;

   signal fdd_seek_error         : std_logic;

   signal fdd_wp_error           : std_logic;

   signal fdd_data_out           : std_logic_vector(7 downto 0);

   signal sd_ram_we              : std_logic;

   signal sd_bsy                 : std_logic;

   signal sd_track               : std_logic_vector(7 downto 0);

   signal sd_side                : std_logic;

   signal sd_sector              : std_logic_vector(4 downto 0);

   signal sd_offset              : std_logic_vector(8 downto 0);

   signal sd_rd_sect             : std_logic;

   signal sd_wr_sect             : std_logic;

begin

   c0 : fddcontroller port map(

      RST                  => RST,

      MCLK                 => MCLK,

      TRACK_00             => TRACK_00,

      INDEX                => INDEX,

      READ_DATA            => READ_DATA,

      WRITE_PROTECT        => WRITE_PROTECT,

      DISK_CHANGE          => DISK_CHANGE,

      DRIVE_SELECT         => DRIVE_SELECT,

      MOTOR_ON             => MOTOR_ON,

      DIRECTION_SELECT     => DIRECTION_SELECT,

      STEP                 => STEP,

      WRITE_GATE           => WRITE_GATE,

      WRITE_DATA           => WRITE_DATA,

      SIDE_ONE_SELECT      => SIDE_ONE_SELECT,

      RD_SECT              => fdd_rd_sect,

      WR_SECT              => fdd_wr_sect,

      MEM_CLK              => fdd_ram_clk,

      MEM_WE               => fdd_ram_we,

      SECTOR               => fdd_sector,

      TRACK                => fdd_track,

      SIDE                 => fdd_side,

      DATA_IN              => fdd_data_in,

      ADDR                 => fdd_ram_addr,

      RDY                  => fdd_rdy,

      BSY                  => fdd_bsy,

      CRC_ERROR            => fdd_crc_error,

      SEEK_ERROR           => fdd_seek_error,

      WP_ERROR             => fdd_wp_error,

      DATA_OUT             => fdd_data_out

   );

   fdd_ram_clk    <= rw_byte_ram_clk or i2c_man_ram_clk;

   fdd_side       <= rw_byte_side_out   when rw_byte_bsy = '1' else sd_side when sd_bsy = '1' else  i2c_man_side;

   fdd_track      <= rw_byte_track_out  when rw_byte_bsy = '1' else sd_track when sd_bsy = '1' else i2c_man_track;

   fdd_sector     <= rw_byte_sector_out when rw_byte_bsy = '1' else sd_sector when sd_bsy = '1' else i2c_man_sector;

   fdd_ram_we     <= rw_byte_ram_we     when rw_byte_bsy = '1' else sd_ram_we when sd_bsy = '1' else i2c_man_ram_we;

   fdd_ram_addr   <= rw_byte_addr_out   when rw_byte_bsy = '1' else i2c_man_ram_addr;

   fdd_data_in    <= rw_byte_ram_di     when rw_byte_bsy = '1' else i2c_man_ram_di;

   fdd_rd_sect    <= rw_byte_rd_sect    when rw_byte_bsy = '1' else sd_rd_sect when sd_bsy = '1' else i2c_man_rd_sect;

   fdd_wr_sect    <= rw_byte_wr_sect    when rw_byte_bsy = '1' else sd_wr_sect when sd_bsy = '1' else i2c_man_wr_sect;

   c1 : rw_byte port map(

      MCLK                 => MCLK,

      SIDE_IN              => rw_byte_side_in,

      RD_BYTE              => rw_byte_rd_byte,

      WR_BYTE              => rw_byte_wr_byte,

      FDD_BSY              => fdd_bsy,

      FDD_RDY              => fdd_rdy,

      CRC_ERROR            => fdd_crc_error,

      SEEK_ERROR           => fdd_seek_error,

      WP_ERROR             => fdd_wp_error,

      SECTOR_IN            => rw_byte_sector_in,

      TRACK_IN             => rw_byte_track_in,

      RAM_DO               => fdd_data_out,

      DATA_IN              => rw_byte_data_in,

      ADDR_IN              => rw_byte_addr_in,

      SIDE_OUT             => rw_byte_side_out,

      BSY                  => rw_byte_bsy,

      ERROR                => rw_byte_error,

      RAM_CLK              => rw_byte_ram_clk,

      RAM_WE               => rw_byte_ram_we,

      RD_SECT              => rw_byte_rd_sect,

      WR_SECT              => rw_byte_wr_sect,

      SECTOR_OUT           => rw_byte_sector_out,

      RAM_DI               => rw_byte_ram_di,

      DATA_OUT             => rw_byte_data_out,

      TRACK_OUT            => rw_byte_track_out,

      ADDR_OUT             => rw_byte_addr_out

   );

   rw_byte_side_in      <= rd_fat_side when rd_fat_bsy = '1' else wr_fat_side;

   rw_byte_sector_in    <= rd_fat_sector when rd_fat_bsy = '1' else wr_fat_sector;

   rw_byte_track_in     <= rd_fat_track when rd_fat_bsy = '1' else wr_fat_track;

   rw_byte_rd_byte      <= rd_fat_rd_byte or wr_fat_rd_byte;

   rw_byte_wr_byte      <= wr_fat_wr_byte;

   rw_byte_addr_in      <= rd_fat_ram_addr when rd_fat_bsy = '1' else wr_fat_ram_addr;

   c2 : read_fat port map(

      EN                   => fdd_rdy,

      MCLK                 => MCLK,

      BSY                  => rd_fat_bsy,

      ENTRY                => i2c_man_fat_entry,

      RD                   => rd_fat_rd,

      DATA_IN              => rw_byte_data_out,

      FAT_OUT              => rd_fat_fat_out,

      RAM_ADDR             => rd_fat_ram_addr,

      SECTOR               => rd_fat_sector,

      SIDE                 => rd_fat_side,

      TRACK                => rd_fat_track,

      RD_BYTE              => rd_fat_rd_byte,

      RW_BSY               => rw_byte_bsy

   );

   c3 : write_fat port map(

      EN                   => fdd_rdy,

      MCLK                 => MCLK,

      WR                   => wr_fat_wr,

      RW_BSY               => rw_byte_bsy,

      DATA_IN              => rw_byte_data_out,

      ENTRY                => i2c_man_fat_entry,

      FAT_VALUE            => i2c_man_fat_value_out,

      RD_BYTE              => wr_fat_rd_byte,

      WR_BYTE              => wr_fat_wr_byte,

      SIDE                 => wr_fat_side,

      BSY                  => wr_fat_bsy,

      SECTOR               => wr_fat_sector,

      TRACK                => wr_fat_track,

      DATA_OUT             => rw_byte_data_in,

      RAM_ADDR             => wr_fat_ram_addr

   );

   c4 : i2c_manager port map(

      RST                  => RST,

      MCLK                 => MCLK,

      RAM_DO               => fdd_data_out,

      RDY                  => fdd_rdy,

      BSY                  => fdd_bsy,

      CRC_ERROR            => fdd_crc_error,

      SEEK_ERROR           => fdd_seek_error,

      WP_ERROR             => fdd_wp_error,

      FAT_VALUE_IN         => rd_fat_fat_out,

      DIR_OFFSET           => sd_offset,

      I2C_ADDR             => I2C_ADDR,

      TRACK                => i2c_man_track,

      SIDE                 => i2c_man_side,

      WR_SECT              => i2c_man_wr_sect,

      RD_SECT              => i2c_man_rd_sect,

      SECTOR               => i2c_man_sector,

      FAT_VALUE_OUT        => i2c_man_fat_value_out,

      FAT_ENTRY            => i2c_man_fat_entry,

      DIR_ENTRY            => i2c_man_dir_entry,

      MEM_WE               => i2c_man_ram_we,

      RAM_CLK              => i2c_man_ram_clk,

      RD_FAT               => rd_fat_rd,

      WR_FAT               => wr_fat_wr,

      SET_DIR              => i2c_man_set_dir,

      WR_DIR               => i2c_man_wr_dir,

      RAM_DI               => i2c_man_ram_di,

      MEM_ADDR             => i2c_man_ram_addr,

      SCL                  => SCL,

      SDA                  => SDA

   );

   c5 : set_directory port map(

      FDD_RDY              => fdd_rdy,

      MCLK                 => MCLK,

      FDD_BSY              => fdd_bsy,

      RAM_WE               => sd_ram_we,

      ENTRY                => i2c_man_dir_entry,

      SET                  => i2c_man_set_dir,

      WR_DIR               => i2c_man_wr_dir,

      SET_BSY              => sd_bsy,

      TRACK                => sd_track,

      SIDE                 => sd_side,

      SECTOR               => sd_sector,

      OFFSET               => sd_offset,

      WR_SECT              => sd_wr_sect,

      RD_SECT              => sd_rd_sect

   );

end idc_top_arch;

--------------------------------------------------------------------------

-- FILENAME : FDDController.vhd

--

-- The main implementation of the floppy disk drive controller.

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 20 December 2003

-- TAB SETTING  : 4

-- RESET        : Async (active low)

-- CLOCK        : 32MHz (clock dependent)

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity FDDController is

    port ( RST                : in std_logic;   -- async reset

           MCLK               : in std_logic;   -- master clock (32MHz)

           -- floppy disk drive signals

           TRACK_00           : in  std_logic;

           INDEX              : in  std_logic;

           READ_DATA          : in  std_logic;

           WRITE_PROTECT      : in  std_logic;

           DISK_CHANGE        : in  std_logic;

           DRIVE_SELECT       : out std_logic;

           MOTOR_ON           : out std_logic;

           DIRECTION_SELECT   : out std_logic;

           STEP               : out std_logic;

           WRITE_GATE         : out std_logic;

           WRITE_DATA         : out std_logic;

           SIDE_ONE_SELECT    : out std_logic;

           -- control signals

           RD_SECT            : in  std_logic;

           WR_SECT            : in  std_logic;

           MEM_CLK            : in  std_logic;

           MEM_WE             : in  std_logic;

           SECTOR             : in  std_logic_vector(4 downto 0);

           TRACK              : in  std_logic_vector(7 downto 0);

           SIDE               : in  std_logic;

           DATA_IN            : in  std_logic_vector(7 downto 0);

           ADDR               : in  std_logic_vector(8 downto 0); 

           RDY                : out std_logic;

           BSY                : out std_logic;

           CRC_ERROR          : out std_logic;

           SEEK_ERROR         : out std_logic;

           WP_ERROR           : out std_logic;

           DATA_OUT           : out std_logic_vector(7 downto 0)

         );

end FDDController;

architecture FDDController_arch of FDDController is

   component ramb4_s8

   port(

      WE             : in  std_logic;

      EN             : in  std_logic;

      RST            : in  std_logic;

      CLK            : in  std_logic;

      ADDR           : in  std_logic_vector(8 downto 0);

      DI             : in  std_logic_vector(7 downto 0);

      DO             : out std_logic_vector(7 downto 0)

      );

   end component;

   attribute box_type : string; 

   attribute box_type of ramb4_s8 : component is "black_box"; 

   component synchronizer

   port(

      CLK            : in  std_logic;

      CLR            : in  std_logic;

      UNSYNC_IN      : in  std_logic;          

      SYNC_OUT       : out std_logic

      );

   end component;

   component dpll

   port(

      RST            : in  std_logic;

      CLK_4MHZ       : in  std_logic;

      BASIC_MFM      : in  std_logic;          

      DPLL_CLK       : out std_logic

      );

   end component;

   component mfm_encoder

   port(

      EN             : in  std_logic;

      MCLK           : in  std_logic;

      RAM_DO         : in  std_logic_vector(7 downto 0);          

      CRC_OUT        : in std_logic_vector(15 downto 0);

      CRC_DATA       : out std_logic_vector(7 downto 0);

      CRC_IN         : out std_logic_vector(15 downto 0);

      RAM_CLK        : out std_logic;

      RAM_ADDR       : out std_logic_vector(8 downto 0);

      BSY            : out std_logic;

      MFM_OUT        : out std_logic

      );

   end component;

   component index_counter

   port(

      INDEX          : in std_logic;          

      COUNT          : out std_logic_vector(3 downto 0)

      );

   end component;

   component mfm_to_basic

   port(

      RST            : in std_logic;

      MFM_IN         : in std_logic;          

      BASIC_OUT      : out std_logic

      );

   end component;

   component clock_divider

   port(

      RST            : in std_logic;

      MCLK           : in std_logic;          

      CLK_4MHZ       : out std_logic

      );

   end component;

   component shift_32

   port(

      RST            : in std_logic;

      CLK            : in std_logic;

      D              : in std_logic;          

      Q              : out std_logic_vector(31 downto 0)

      );

   end component;

   component init_controller

   port(

      RST            : in std_logic;

      MCLK           : in std_logic;

      DISK_CHANGE    : in std_logic;

      TRACK_00       : in std_logic;          

      RDY            : out std_logic;

      STEP           : out std_logic;

      DIRECTION      : out std_logic

      );

   end component;

   component step_controller

   port(

      RST            : in std_logic;

      MCLK           : in std_logic;

      EN             : in std_logic;

      TRACK          : in std_logic_vector(7 downto 0);          

      BSY            : out std_logic;

      STEP           : out std_logic;

      DIRECTION      : out std_logic

      );

   end component;

   component read_address_field

   port(

      MCLK           : in std_logic;

      EN             : in std_logic;

      DATA_IN        : in std_logic_vector(7 downto 0);

      BYTE_COUNT     : in std_logic_vector(9 downto 0);          

      CRC_OUT        : in std_logic_vector(15 downto 0);

      CRC_IN         : out std_logic_vector(15 downto 0);

      CRC_DATA       : out std_logic_vector(7 downto 0);

      SECTOR         : out std_logic_vector(4 downto 0)

      );

   end component;

   component read_data_field

   port(

      MCLK           : in std_logic;

      EN             : in std_logic;

      DATA_IN        : in std_logic_vector(7 downto 0);

      NEW_DATA       : in std_logic;

      RD_SECT        : in std_logic;

      INDEX_COUNT    : in std_logic_vector(3 downto 0);

      READ_SECTOR    : in std_logic_vector(4 downto 0);

      CURRENT_SECTOR : in std_logic_vector(4 downto 0);

      BYTE_COUNT     : in std_logic_vector(9 downto 0);

      DATA_FIELD     : in std_logic;

      CRC_OUT        : in std_logic_vector(15 downto 0);

      CRC_IN         : out std_logic_vector(15 downto 0);

      CRC_DATA       : out std_logic_vector(7 downto 0);

      CRC_EN         : out std_logic;

      BSY            : out std_logic;

      RAM_CLK        : out std_logic;

      RAM_ADDR       : out std_logic_vector(8 downto 0);

      CRC_ERROR      : out std_logic;

      SEEK_ERROR     : out std_logic

      );

   end component;

   component write_data_field

   port(

      MCLK           : in std_logic;

      EN             : in std_logic;

      WR_SECT        : in std_logic;

      ADDRESS_FIELD  : in std_logic;

      WRITE_PROTECT  : in std_logic;

      ENCODER_BSY    : in std_logic;

      INDEX_COUNT    : in std_logic_vector(3 downto 0);

      CURRENT_SECTOR : in std_logic_vector(4 downto 0);

      WRITE_SECTOR   : in std_logic_vector(4 downto 0);

      BYTE_COUNT     : in std_logic_vector(9 downto 0);          

      BSY            : out std_logic;

      SEEK_ERROR     : out std_logic;

      WP_ERROR       : out std_logic;

      ENCODER_EN     : out std_logic

      );

   end component;

   component byte_counter

   port(

      RST            : in std_logic;

      DPLL_CLK       : in std_logic;

      AF_AM          : in std_logic;

      DF_AM          : in std_logic;          

      NEW_BYTE       : out std_logic;

      COUNT          : out std_logic_vector(9 downto 0)

      );

   end component;

   component crc

   port(

      DATA_IN        : in std_logic_vector(7 downto 0);

      CRC_IN         : in std_logic_vector(15 downto 0);

      CRC_OUT        : out std_logic_vector(15 downto 0)

      );

   end component;

   type field_type is ( ADDRESS_FIELD, DATA_FIELD );

   signal current_field       : field_type;

   signal synced_index        : std_logic;

   signal synced_mfm          : std_logic;

   signal basic_mfm           : std_logic;

   signal clk_4mhz            : std_logic;

   signal address_field_am    : std_logic;

   signal data_field_am       : std_logic;

   signal sig_newbyte         : std_logic;

   signal controller_rdy      : std_logic;

   signal ram_we              : std_logic;

   signal ram_en              : std_logic;

   signal ram_rst             : std_logic;

   signal ram_clk             : std_logic;

   signal read_bsy            : std_logic;

   signal ram_clk_rd          : std_logic;

   signal controller_bsy      : std_logic;

   signal dpll_clk            : std_logic;

   signal mfm_ram_clk         : std_logic;

   signal mfm_out             : std_logic;

   signal write_bsy           : std_logic;

   signal df_crc_en           : std_logic;

   signal read_seek_err       : std_logic;

   signal write_seek_err      : std_logic;

   signal init_direction      : std_logic;

   signal init_step           : std_logic;

   signal stepper_bsy         : std_logic;

   signal stepper_step        : std_logic;

   signal stepper_direction   : std_logic;

   signal read_af_en          : std_logic;

   signal sig_data_field      : std_logic;

   signal sig_address_field   : std_logic;

   signal encoder_en          : std_logic;

   signal encoder_bsy         : std_logic;

   signal index_count         : std_logic_vector(3 downto 0);

   signal sector_reg          : std_logic_vector(4 downto 0);

   signal ram_di              : std_logic_vector(7 downto 0);

   signal ram_do              : std_logic_vector(7 downto 0);

   signal byte_reg            : std_logic_vector(7 downto 0);

   signal df_crc_data         : std_logic_vector(7 downto 0);

   signal af_crc_data         : std_logic_vector(7 downto 0);

   signal crc_data            : std_logic_vector(7 downto 0);

   signal mfm_crc_data        : std_logic_vector(7 downto 0);

   signal mfm_ram_addr        : std_logic_vector(8 downto 0);

   signal ram_addr            : std_logic_vector(8 downto 0);

   signal ram_addr_rd         : std_logic_vector(8 downto 0);

   signal sig_byte_count      : std_logic_vector(9 downto 0);

   signal crc_out             : std_logic_vector(15 downto 0);

   signal crc_in              : std_logic_vector(15 downto 0);

   signal mfm_crc_in          : std_logic_vector(15 downto 0);

   signal af_crc_in           : std_logic_vector(15 downto 0);

   signal df_crc_in           : std_logic_vector(15 downto 0);

   signal mfm_seq_32          : std_logic_vector(31 downto 0);

   constant AF_AM             : std_logic_vector(31 downto 0) := 

                              "10000111000011100110011001100111";

   constant DF_AM             : std_logic_vector(31 downto 0) := 

                              "10000111000011100110011001111001";

begin

   RDY            <= controller_rdy;

   BSY            <= controller_bsy;

   SEEK_ERROR     <= read_seek_err or write_seek_err;

   controller_bsy <= stepper_bsy or read_bsy or write_bsy or (not controller_rdy);

   crc_data       <= df_crc_data when df_crc_en = '1'  else mfm_crc_data when encoder_en = '1' else af_crc_data;

   crc_in         <= df_crc_in when df_crc_en = '1' else mfm_crc_in when encoder_en = '1' else af_crc_in;

   mfm_crc : crc port map(

      DATA_IN     => crc_data,

      CRC_IN      => crc_in,

      CRC_OUT     => crc_out

   );

   c1 : synchronizer port map(

      CLK            => MCLK,

      CLR            => RST,

      UNSYNC_in      => READ_DATA,

      SYNC_out       => synced_mfm

   );

   c2 : synchronizer port map (

      CLK            => MCLK,

      CLR            => RST,

      UNSYNC_in      => inDEX,

      SYNC_out       => synced_index

   );

   c4 : dpll port map (

      RST            => RST,

      CLK_4MHZ       => clk_4mhz,

      BASIC_MFM      => basic_mfm,

      DPLL_CLK       => dpll_clk

   );

   c5 : index_counter port map (

      inDEX          => synced_index,

      COUNT          => index_count

   );

   c6 : mfm_encoder port map(

      EN             => encoder_en,

      MCLK           => MCLK,

      RAM_DO         => ram_do,

      RAM_CLK        => mfm_ram_clk,

      RAM_ADDR       => mfm_ram_addr,

      BSY            => encoder_bsy,

      MFM_OUT        => mfm_out,

      CRC_DATA       => mfm_crc_data,

      CRC_IN         => mfm_crc_in,

      CRC_OUT        => crc_out

   );

   c7 : mfm_to_basic port map(

      RST            => RST,

      MFM_in         => synced_mfm,

      BASIC_out      => basic_mfm

   );

   c8 : clock_divider port map(

      RST            => RST,

      MCLK           => MCLK,

      CLK_4MHZ       => clk_4mhz

   );

   c9 : shift_32 port map(

      RST            => RST,

      CLK            => dpll_clk,

      D              => basic_mfm,

      Q              => mfm_seq_32

   );

   c10 : init_controller port map(

      RST            => RST,

      MCLK           => MCLK,

      DISK_CHANGE    => DISK_CHANGE,

      TRACK_00       => TRACK_00,

      RDY            => controller_rdy,

      STEP           => init_step,

      DIRECTION      => init_direction

   );

   c11 : step_controller port map(

      RST            => RST,

      MCLK           => MCLK,

      EN             => controller_rdy,

      TRACK          => TRACK,

      BSY            => stepper_bsy,

      STEP           => stepper_step,

      DIRECTION      => stepper_direction

   );

   ram_en   <= '1';

   ram_rst  <= not RST;

   ram_we   <= MEM_WE  when controller_bsy = '0'                            else 

               '1'     when (read_bsy = '1' and current_field = DATA_FIELD) else 

               '0';

   ram_clk  <= MEM_CLK     when controller_bsy = '0' else 

               ram_clk_rd  when read_bsy = '1'       else 

               mfm_ram_clk when encoder_en = '1' else

               '0';

   ram_addr <= ADDR         when controller_bsy = '0' else 

               ram_addr_rd  when read_bsy = '1'       else 

               mfm_ram_addr when encoder_en = '1' else

               (others => '0');

   ram_di   <= DATA_in  when controller_bsy = '0' else 

               byte_reg when read_bsy = '1'       else 

               (others => '0');

   DATA_out <= ram_do;

   c12 : ramb4_s8 port map(

      WE             => ram_we,

      EN             => ram_en,

      RST            => ram_rst,

      CLK            => ram_clk,

      ADDR           => ram_addr,

      DI             => ram_di,

      DO             => ram_do

   );

   read_af_en <= '1' when current_field = ADDRESS_FIELD and controller_bsy = '1' else '0';

   c13 : read_address_field port map(

      MCLK              => MCLK,

      EN                => read_af_en,

      DATA_IN           => byte_reg,

      BYTE_COUNT        => sig_byte_count,

      SECTOR            => sector_reg,

      CRC_OUT           => crc_out,

      CRC_IN            => af_crc_in,

      CRC_DATA          => af_crc_data

   );

   sig_data_field <= '1' when current_field = DATA_FIELD else '0';

   c14 : read_data_field port map(

      MCLK              => MCLK,

      EN                => controller_rdy,

      DATA_in           => byte_reg,

      NEW_DATA          => sig_newbyte,

      RD_SECT           => RD_SECT,

      INDEX_COUNT       => index_count,

      READ_SECTOR       => SECTOR,

      CURRENT_SECTOR    => sector_reg,

      BYTE_COUNT        => sig_byte_count,

      DATA_FIELD        => sig_data_field,

      BSY               => read_bsy,

      RAM_CLK           => ram_clk_rd,

      RAM_ADDR          => ram_addr_rd,

      CRC_ERROR         => CRC_ERROR,

      SEEK_ERROR        => read_seek_err,

      CRC_OUT           => crc_out,

      CRC_IN            => df_crc_in,

      CRC_DATA          => df_crc_data,

      CRC_EN            => df_crc_en

   );

   sig_address_field <= '1' when current_field = ADDRESS_FIELD else '0';

   c15 : write_data_field port map(

      MCLK              => MCLK,

      EN                => controller_rdy,

      WR_SECT           => WR_SECT,

      ADDRESS_FIELD     => sig_address_field,

      WRITE_PROTECT     => WRITE_PROTECT,

      ENCODER_BSY       => encoder_bsy,

      INDEX_COUNT       => index_count,

      CURRENT_SECTOR    => sector_reg,

      WRITE_SECTOR      => SECTOR,

      BYTE_COUNT        => sig_byte_count,

      BSY               => write_bsy,

      SEEK_ERROR        => write_seek_err,

      WP_ERROR          => WP_ERROR,

      ENCODER_EN        => encoder_en

   );

   c16 : byte_counter port map(

      RST               => RST,

      DPLL_CLK          => dpll_clk,

      AF_AM             => address_field_am,

      DF_AM             => data_field_am,

      NEW_BYTE          => sig_newbyte,

      COUNT             => sig_byte_count

   );

   address_field_am <= '1' when mfm_seq_32 = AF_AM or 

                                mfm_seq_32 = (not AF_AM) else '0';

   data_field_am    <= '1' when mfm_seq_32 = DF_AM or

                                mfm_seq_32 = (not DF_AM) else '0';

   field_detector : process(MCLK)

   begin

      if rising_edge(MCLK) then

         -- The controller is not ready either on a system reset or 

         -- when a disk is removed.

         if controller_rdy = '0' then

            current_field <= DATA_FIELD;

         else

            -- The address_field_am and data_field_am signals only

            -- indicate when we are at the start of the address mark

            -- so current_field is used to indicate when we are

            -- in the field.

            if address_field_am = '1' then

               current_field <= ADDRESS_FIELD;

            elsif data_field_am = '1' then

               current_field <= DATA_FIELD;

            end if;

         end if;

      end if;

   end process field_detector;

--------------------------------------------------------------------------

-- SIGNAL : byte_reg

--

-- When a new byte is read from the disk it is put in this signal.  Any

-- value in this signal is valid and remains valid until a complete

-- new byte arrives.  The byte_count signal can be used as an indicator

-- to read this signal.

--------------------------------------------------------------------------

   byte_reg(0) <= '1' when mfm_seq_32(0)  /= mfm_seq_32(1)  and sig_newbyte = '1' else '0';

   byte_reg(1) <= '1' when mfm_seq_32(2)  /= mfm_seq_32(3)  and sig_newbyte = '1' else '0';

   byte_reg(2) <= '1' when mfm_seq_32(4)  /= mfm_seq_32(5)  and sig_newbyte = '1' else '0';

   byte_reg(3) <= '1' when mfm_seq_32(6)  /= mfm_seq_32(7)  and sig_newbyte = '1' else '0';

   byte_reg(4) <= '1' when mfm_seq_32(8)  /= mfm_seq_32(9)  and sig_newbyte = '1' else '0';

   byte_reg(5) <= '1' when mfm_seq_32(10) /= mfm_seq_32(11) and sig_newbyte = '1' else '0';

   byte_reg(6) <= '1' when mfm_seq_32(12) /= mfm_seq_32(13) and sig_newbyte = '1' else '0';

   byte_reg(7) <= '1' when mfm_seq_32(14) /= mfm_seq_32(15) and sig_newbyte = '1' else '0';

--------------------------------------------------------------------------

-- SIGNALS : floppy disk drive signals

--

-- All the outputs to the floppy disk drive.

--------------------------------------------------------------------------

   SIDE_ONE_SELECT   <= SIDE;

   DRIVE_SELECT      <= '0';

   MOTOR_ON          <= '0' when read_bsy = '1' or write_bsy = '1' else '1';

   STEP              <= init_step and stepper_step when RST = '1' else '1';

   DIRECTION_SELECT  <= init_direction when controller_rdy = '0' else stepper_direction;

   WRITE_DATA        <= mfm_out;

   WRITE_GATE        <= '0' when RST = '1' and encoder_en = '1' else '1';

--------------------------------------------------------------------------

--------------------------------------------------------------------------

end FDDController_arch;

--------------------------------------------------------------------------

-- FILENAME : byte_counter.vhd

--

-- Counts the number of bytes in the data and address fields.

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 20 December 2003

-- TAB SETTING  : 4

-- RESET        : Async (active low)

-- CLOCK        : DPLL_CLK

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity byte_counter is

    port ( RST             : in std_logic;

           DPLL_CLK        : in std_logic;

           AF_AM           : in std_logic;

           DF_AM           : in std_logic;

           NEW_BYTE        : out std_logic;

           COUNT           : out std_logic_vector(9 downto 0)

         );

end byte_counter;

architecture byte_counter_arch of byte_counter is

   signal af_bit_count        : integer range 0 to 448;

   signal byte_count          : integer range 0 to 514;

   signal df_bit_count        : integer range 0 to 8224;

   -- The constants are the number of DPLL_CLK pulses

   -- per address field.  To get the bytes divide each

   -- value by 16.

   constant DF_LENGTH         : integer := 8224;

   constant AF_LENGTH         : integer := 448;

begin

   NEW_BYTE <= '1' when (af_bit_count > 0 and af_bit_count mod 16 = 0) or

                        (df_bit_count > 0 and df_bit_count mod 16 = 0) else '0';

   byte_count <= af_bit_count / 16 when (af_bit_count > 0 and af_bit_count mod 16 = 0) else 

                 df_bit_count / 16 when (df_bit_count > 0 and df_bit_count mod 16 = 0) else 0;

   COUNT <= conv_std_logic_vector(byte_count, 10);

   af_bit_counter : process(RST, DPLL_CLK)

   begin

      if RST = '0' then

         af_bit_count <= 0;

      elsif rising_edge(DPLL_CLK) then

         if AF_AM = '1' or af_bit_count > 0 then

            if af_bit_count = AF_LENGTH then

               af_bit_count <= 0;

            else

               af_bit_count <= af_bit_count + 1;

            end if;

         end if;

      end if;

   end process af_bit_counter;

   df_bit_counter : process(RST, DPLL_CLK)

   begin

      if RST = '0' then

         df_bit_count <= 0;

      elsif rising_edge(DPLL_CLK) then

         if DF_AM = '1' or df_bit_count > 0 then

            if df_bit_count = DF_LENGTH then

               df_bit_count <= 0;

            else

               df_bit_count <= df_bit_count + 1;

            end if;           

         end if;

      end if;

   end process df_bit_counter;

end byte_counter_arch;

--------------------------------------------------------------------------

-- FILENAME : clock_divider.vhd

--

-- Divide the input MCLK by 4 to produce a 4MHz output.  The 4MHz output

-- is used to clock the DPLL.

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 15 December 2003

-- TAB SETTING  : 4

-- RESET        : Async (active low)

-- CLOCK        : 32MHz

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity clock_divider is

    port ( RST          : in std_logic;

           MCLK         : in std_logic;

           CLK_4MHZ     : out std_logic

         );

end clock_divider;

architecture clock_divider_arch of clock_divider is

   signal clock         : std_logic;

   signal edge_count    : integer range 0 to 3;

begin

   CLK_4MHZ <= clock;

   main : process(RST, MCLK)

   begin

      if RST = '0' then

         clock   <= '1';

         edge_count <= 0;

      elsif rising_edge(MCLK) then

         if edge_count = 3 then

            clock <= not clock;

            edge_count <= 0;

         else

            edge_count <= edge_count + 1;

         end if;

      end if;

   end process main;

end clock_divider_arch;

--------------------------------------------------------------------------

-- FILENAME : crc.vhd

--

-- Performs a parallel CCITT CRC on DATA_IN.  The properties of the CRC 

-- are:

--

--    Poly       : X^16 + X^12 + X^5 + 1

--    Reflecting : None

--    Final XOR  : None

--    Width      : 16 bits

--

-- It's upto the module using this CRC to initialise it to 0xFFFF, as 

-- used by the floppy disk.

--

-- This design is based on the standard serial design, but I have 

-- converted it to parallel.  See the final report to see how this was

-- done.

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 7 Februaury 2004

-- TAB SETTING  : 4

-- RESET        : None

-- CLOCK        : None

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity crc is

    port ( DATA_IN   : in std_logic_vector(7 downto 0);

           CRC_IN    : in std_logic_vector(15 downto 0);

           CRC_OUT   : out std_logic_vector(15 downto 0)

         );

end crc;

architecture crc_arch of crc is

begin

   CRC_OUT(0)  <= CRC_IN(12) xor CRC_IN(8)  xor DATA_IN(4) xor DATA_IN(0);

   CRC_OUT(1)  <= CRC_IN(13) xor CRC_IN(9)  xor DATA_IN(5) xor DATA_IN(1);

   CRC_OUT(2)  <= CRC_IN(14) xor CRC_IN(10) xor DATA_IN(6) xor DATA_IN(2);

   CRC_OUT(3)  <= CRC_IN(15) xor CRC_IN(11) xor DATA_IN(7) xor DATA_IN(3);

   CRC_OUT(4)  <= CRC_IN(12) xor DATA_IN(4);

   CRC_OUT(5)  <= CRC_IN(13) xor DATA_IN(5) xor CRC_IN(8)  xor CRC_IN(12) xor DATA_IN(4) xor DATA_IN(0);

   CRC_OUT(6)  <= CRC_IN(14) xor DATA_IN(6) xor CRC_IN(9)  xor CRC_IN(13) xor DATA_IN(5) xor DATA_IN(1);

   CRC_OUT(7)  <= CRC_IN(15) xor DATA_IN(7) xor CRC_IN(10) xor CRC_IN(14) xor DATA_IN(6) xor DATA_IN(2);

   CRC_OUT(8)  <= CRC_IN(15) xor CRC_IN(11) xor DATA_IN(7) xor CRC_IN(0)  xor DATA_IN(3);

   CRC_OUT(9)  <= CRC_IN(12) xor CRC_IN(1)  xor DATA_IN(4);

   CRC_OUT(10) <= CRC_IN(13) xor CRC_IN(2)  xor DATA_IN(5);

   CRC_OUT(11) <= CRC_IN(14) xor CRC_IN(3)  xor DATA_IN(6);

   CRC_OUT(12) <= CRC_IN(15) xor CRC_IN(4)  xor DATA_IN(7) xor CRC_IN(8) xor CRC_IN(12) xor DATA_IN(4) xor DATA_IN(0);

   CRC_OUT(13) <= CRC_IN(13) xor CRC_IN(9)  xor DATA_IN(5) xor CRC_IN(5) xor DATA_IN(1);

   CRC_OUT(14) <= CRC_IN(14) xor CRC_IN(10) xor DATA_IN(6) xor CRC_IN(6) xor DATA_IN(2);

   CRC_OUT(15) <= CRC_IN(15) xor CRC_IN(11) xor DATA_IN(7) xor CRC_IN(7) xor DATA_IN(3);

end crc_arch;

--------------------------------------------------------------------------

-- FILENAME : dpll.vhd

--

-- The Digital Phase Locked Loop.  Generates a 1MHz clock which is locked

-- the Basic MFM signal.

--

-- See the project report for a detailed description.

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 15 December 2003

-- TAB SETTING  : 4

-- RESET        : Async (active low)

-- CLOCK        : 4MHz (clock dependent)

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity dpll is

    port ( RST          : in std_logic;

           CLK_4MHZ     : in std_logic;

           BASIC_MFM    : in std_logic;

           DPLL_CLK     : out std_logic

         );

end dpll;

architecture dpll_arch of dpll is

   type dpll_type  is ( SA, SB, SC, SD, SE );

   signal dpll_state          : dpll_type;

   signal a_mfm               : std_logic;

   signal d_mfm               : std_logic;

begin

   main : process(RST, CLK_4MHZ)

   begin

      if RST = '0' then

         dpll_state <= SA;

         d_mfm      <= '0';

      elsif rising_edge(CLK_4MHZ) then

         case dpll_state is

            ---------------------------------------------------------------

            when SA =>

               DPLL_CLK <= '1';

               if d_mfm = BASIC_MFM then

                  dpll_state <= SB;

               else

                  dpll_state <= SE;

               end if;

               a_mfm <= BASIC_MFM;           

            ---------------------------------------------------------------

            when SB =>

               DPLL_CLK <= '1';

               if a_mfm = BASIC_MFM then

                  dpll_state <= SC;

               else

                  dpll_state <= SD;

               end if;

            ---------------------------------------------------------------

            when SC =>

               DPLL_CLK <= '0';

               dpll_state <= SD;

            ---------------------------------------------------------------

            when SD =>

               DPLL_CLK <= '0';

               d_mfm <= BASIC_MFM;

               dpll_state <= SA;

            ---------------------------------------------------------------

            when SE =>

               dpll_state <= SB;

            when others =>

               null;

         end case;

      end if;

   end process main;

end dpll_arch;

--------------------------------------------------------------------------

-- FILENAME : index_counter.vhd

--

-- Count the number of INDEX pulses (the number of disk revolutions).  The

-- output is used as a timeout when searching for a particular sector.

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 30 December 2003

-- TAB SETTING  : 4

-- RESET        : None

-- CLOCK        : INDEX

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity index_counter is

    Port ( INDEX     : in std_logic;

           COUNT     : out std_logic_vector(3 downto 0)

         );

end index_counter;

architecture index_counter_arch of index_counter is

   signal sig_count : std_logic_vector(3 downto 0);

begin

   COUNT <= sig_count;

   main : process(INDEX)

   begin

      if rising_edge(INDEX) then

         if sig_count < "1111" then

            sig_count <= sig_count + '1';

         else

            sig_count <= (others => '0');

         end if;

      end if;

   end process main;

end index_counter_arch;

--------------------------------------------------------------------------

-- FILENAME : init_controller.vhd

--

-- This component is the first component to become active after a reset

-- and takes total control of the controller.  While in control it will

-- check if a disk is in the disk drive and then move the read / write

-- head to track zero.  Control is then passed to the other controller

-- components.  If at any point the control is reset or a disk is removed

-- this component takes over control again (the other components can't

-- really do much unless a disk is in the drive).

--

-- The RDY output is used as synchronus reset to many of the components.

-- This isn't a problem as those components are clocked by MCLK and this

-- component will take many MCLK pulses to do it's stuff, therefore

-- guaranteeing that the other components will synchronusly reset.

--

-- I have found that if the power to disk drive is toggled the

-- read / write head can move very slightly of the current track.  When

-- this happens the data from the drive is corrupt and the TRACK_00 

-- signal from the disk drive can indicate that it is on track zero.  To

-- overcome this I move the read / write head to track 80 and then back

-- to track zero.  This effectivly realligns the read / write head and

-- generates a valid TRACK_00 signal.

--

-- The DISK_CHANGE signal only signals that a disk is present after

-- performing a step.

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 30 December 2003

-- TAB SETTING  : 4

-- RESET        : Async (active low)

-- CLOCK        : 32MHz (clock dependent)

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity init_controller is

    Port ( RST          : in std_logic;

           MCLK         : in std_logic;

           DISK_CHANGE  : in std_logic;

           TRACK_00     : in std_logic;

           RDY          : out std_logic;

           STEP         : out std_logic;

           DIRECTION    : out std_logic

         );

end init_controller;

architecture init_controller_arch of init_controller is

   type state_type is ( RESET, IDLE, CHECK_FOR_DISK, MOVE_TO_TRACK80, MOVE_TO_TRACK00, 

                        DELAY_20MS, PERFORM_STEP_IN, PERFORM_STEP_OUT );

   signal state               : state_type;

   signal step_dly            : integer range 0 to 200000;

   signal track_count         : integer range 0 to 200;

   signal delay_count         : integer range 0 to 640000;

   constant DURATION_4MS      : integer := 128000;

   constant DURATION_5MS      : integer := 160000;

   constant DURATION_20MS     : integer := 640000;

begin

   STEP <= '1' when step_dly < DURATION_4MS else '0';

   main : process (RST, MCLK)

   begin

      if RST = '0' then

         RDY            <= '0';

         state          <= RESET;

         step_dly       <= 0;

         DIRECTION      <= '0';

      elsif rising_edge(MCLK) then

         case state is

            when RESET =>

               DIRECTION  <= '0';   -- move towards track 00

               step_dly   <= 0;

               state      <= CHECK_FOR_DISK;

            -- Enter this state directly after a reset or once a disk

            -- has been found and the read / write head has been moved

            -- to track zero.  While in this state it keeps checking

            -- that a disk is in the drive.

            ------------------------------------------------------------   

            when IDLE =>

               -- If ever a disk is removed DISK_CHANGE will go low.

               if DISK_CHANGE = '0' then

                  RDY <= '0';

                  DIRECTION  <= '0';   -- move towards track 00

                  step_dly   <= 0;

                  state      <= CHECK_FOR_DISK;

               end if;

            -- Keep incrementing step_dly for 5ms.  In this time a step

            -- pulse will generated (see STEP) which will make the

            -- DISK_CHANGE signal valid.

            ------------------------------------------------------------   

            when CHECK_FOR_DISK =>

               if step_dly = DURATION_5MS then

                  if DISK_CHANGE = '1' then

                     -- A disk is present so move the read / write to

                     -- track 80 and then back to track zero (reallign

                     -- the head).

                     step_dly    <= 0;

                     track_count <= 0;

                     state       <= MOVE_TO_TRACK80;

                  else

                     state       <= IDLE;

                  end if;

               else

                  step_dly <= step_dly + 1;

                  state      <= CHECK_FOR_DISK;

               end if;  

            -- Generated 80 STEP pulses to make sure we are on track

            -- 80 and then move back to track zero.  As we don't know

            -- what track we are on the safest thing to do is assume

            -- we are on track zero.

            ------------------------------------------------------------      

            when MOVE_TO_TRACK80 =>

               DIRECTION <= '0';  -- move towards track 80

               if track_count = 80 then

                  state       <= MOVE_TO_TRACK00;

               else

                  track_count <= track_count + 1;

                  state       <= PERFORM_STEP_OUT;

               end if;

            -- When we enter this state we are on track 80 so keep

            -- stepping the read / write head inwards until the

            -- TRACK_00 signal from the disk drive indicates that we

            -- are definatly on track zero.  This is more reliable than

            -- simply counting the STEP pulses.

            ------------------------------------------------------------   

            when MOVE_TO_TRACK00 =>

               DIRECTION <= '1';  -- move towards track zero

               if TRACK_00 = '1' then

                  track_count <= 0;

                  state <= PERFORM_STEP_IN;

               else

                  -- We are now on track zero so the controller

                  -- is ready to be used.  A floppy disk specification

                  -- recommends a 20ms gap between a STEP and a WRITE

                  -- so generate that delay here.

                  delay_count <= 0;

                  state       <= DELAY_20MS;

               end if;

            -- Generate a 20ms delay after the final STEP just in case

            -- a WRITE is performed straight away.  When this delay

            -- is complete the controller is ready to be used.

            ------------------------------------------------------------   

            when DELAY_20MS =>

               if delay_count = DURATION_20MS then

                  RDY            <= '1';

                  state          <= IDLE;

               else

                  delay_count    <= delay_count + 1;

                  state      <= DELAY_20MS;

               end if;

            -- Perform a STEP.  See the STEP signal to see how this 

            -- works.

            ------------------------------------------------------------      

            when PERFORM_STEP_IN =>

               if step_dly = DURATION_5MS then

                  step_dly <= 0;

                  state    <= MOVE_TO_TRACK00;

               else

                  step_dly <= step_dly + 1;

                  state <= PERFORM_STEP_IN;

               end if;

            -- Perform a STEP.  See the STEP signal to see how this 

            -- works.

            ------------------------------------------------------------   

            when PERFORM_STEP_OUT =>

               if step_dly = DURATION_5MS then

                  step_dly <= 0;

                  state    <= MOVE_TO_TRACK80;

               else

                  step_dly <= step_dly + 1;

                  state <= PERFORM_STEP_OUT;

               end if;

            when others =>

               null;

         end case;

      end if;

   end process main;

end init_controller_arch;

--------------------------------------------------------------------------

-- FILENAME : mfm_encoder.vhd

--

-- Takes the parallel contents of the RAM and converts it to serial.  The

-- serial output from the RAM is then converted to an MFM (Modified 

-- Frequency Modulation) signal.  The MFM signal is output at a rate of

-- 500KHz so that it can be fed directly into the disk drive.

--

-- Before the data is output this component first outputs a series of 10

-- zero valued bytes followed by the 4 byte address mark of the data 

-- field.  The data is then followed by the CRC and then a series of 1's.

-- In other words this component outputs an entire data field.  The 

-- reasons for this are described in the final report.

--

-- To start this component assert EN.

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 24 February 2004

-- TAB SETTING  : 4

-- RESET        : Synch via MCLK (de-assert EN)

-- CLOCK        : 32MHz (clock dependent)

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity mfm_encoder is

    port ( EN              : in std_logic;

           MCLK            : in std_logic;

           RAM_DO          : in std_logic_vector(7 downto 0);

           CRC_DATA        : out std_logic_vector(7 downto 0);

           CRC_IN          : out std_logic_vector(15 downto 0);

           CRC_OUT         : in std_logic_vector(15 downto 0);

           RAM_CLK         : out std_logic;

           RAM_ADDR        : out std_logic_vector(8 downto 0);

           BSY             : out std_logic;

           MFM_OUT         : out std_logic

         );

end mfm_encoder;

architecture mfm_encoder_arch of mfm_encoder is

   -- types

   type shifter_type is ( INIT_CLK_LOW, INIT_CLK_HIGH, OUTPUT_GAP, OUTPUT_AM, OUTPUT_FB, IDLE, WHILE_500KHZ_LOW, WHILE_500KHZ_HIGH, OUTPUT_BIT, INC_ADDR, CLOCK_RAM, UPDATE_CRC, OUTPUT_CRC );

   type write_type   is ( ADDRESS_MARK, GAP, FB, DATA, CRC_FIELD );

   -- generate_500khz

   signal clk500khz           : std_logic;

   signal count               : integer range 0 to 63;

   -- shifter

   signal write_state         : write_type;

   signal shifter_state       : shifter_type;

   signal serial_output       : std_logic_vector(1 downto 0);

   signal serial_addr         : std_logic_vector(8 downto 0);

   signal bit_ptr             : integer range 7 downto 0;

   signal crc_ptr             : integer range 23 downto 0;

   signal edge_count          : integer range 0 to 176;

   signal byte_count          : integer range 0 to 3;

   -- crc

   signal sig_crc_out         : std_logic_vector(23 downto 0);

   -- pulser

   signal pulse_duration : integer range 0 to 12;

   -- constants

   constant PULSE_LENGTH      : integer := 12;

   constant BIT_PERIOD        : integer := 64;

   constant AM_BYTE_CNT       : integer := 3;

   constant GAP_EDGES         : integer := 88;

   constant DF_AM_BYTE        : std_logic_vector(7 downto 0)  := x"FB";

   constant DF_AM_CRC         : std_logic_vector(15 downto 0) := x"CDB4";

begin

--------------------------------------------------------------------------

--------------------------------------------------------------------------

   sig_crc_out(23 downto 8) <= CRC_OUT;

   RAM_ADDR <= serial_addr;

--------------------------------------------------------------------------

--------------------------------------------------------------------------

   MFM_OUT <= '1' when pulse_duration = 0 else '0';

   pulser : process(MCLK)

   begin

      if rising_edge(MCLK) then

         if EN = '0' then

            pulse_duration <= 0;

         else

            -- If the current bit is 1 then generate a pulse in the middle of the

            -- bit period.  Or if the current and next bit are both zero generate

            -- a pulse at the end of the bit period.

            if (serial_output(1) = '1' and count = ((BIT_PERIOD - PULSE_LENGTH) / 2)) or 

               (serial_output = "00"   and count = (BIT_PERIOD - (PULSE_LENGTH / 2))) or 

               (pulse_duration > 0) then

               if pulse_duration = PULSE_LENGTH then

                  pulse_duration <= 0;

               else

                  pulse_duration <= pulse_duration + 1;

               end if;

            end if;

         end if;

      end if;

   end process pulser;

--------------------------------------------------------------------------

-- PROCESS : generate_500khz

--

-- Generate a 500KHz clock from MCLK.  The 500KHz clock is used to 

-- generate the MFM signal.

--

-- NOTE : Rather than counting upto half the bit period then inverting

--        the 500KHz clock this process counts upto twice the bit period.

--        This is because the second half of the bit period is used by

--        the pulser process.

--------------------------------------------------------------------------

   generate_500khz : process(MCLK)

   begin

      if rising_edge(MCLK) then

         if EN = '0' then

            count     <= 0;

            clk500khz <= '1';

         elsif count = ((BIT_PERIOD / 2) - 1) then

            clk500khz <= not clk500khz;

            count <= count + 1;

         elsif count = (BIT_PERIOD - 1) then

            clk500khz <= not clk500khz;

            count     <= 0;

         else

            count <= count + 1;

         end if;

      end if;

   end process generate_500khz;

--------------------------------------------------------------------------

-- PROCESS : shifter

--

-- Take the parallel contents of the RAM and convert it to serial.

--

-- This FSM does it's work on the rising edge of the 500KHz clock.  The

-- MFM conversion is then done in the later on in the 500KHz period.

--------------------------------------------------------------------------

   shifter : process(MCLK)

   begin

      if rising_edge(MCLK) then

         if EN = '0' then 

            serial_addr          <= (others => '0');

            RAM_CLK              <= '1';

            shifter_state        <= INIT_CLK_LOW;

            BSY                  <= '1';

            crc_in               <= DF_AM_CRC;

            crc_data             <= DF_AM_BYTE;

            crc_ptr              <= 23;

            edge_count           <= 0;

            byte_count           <= 0;

            write_state          <= GAP;

            serial_output        <= "00";

            bit_ptr              <= 6;

            sig_crc_out(7 downto 0) <= x"FF";

         else

            case shifter_state is

               -- This is the first state of the FSM.  This and the

               -- next state are responsible for setting the RAM up

               -- with the first byte to be output.  The data on in

               -- the RAM is output on the rising edge of the clock

               -- and the address is set to zero when this FSM is 

               -- disabled.

               ---------------------------------------------------------------

               when INIT_CLK_LOW =>                

                  RAM_CLK       <= '0';

                  shifter_state <= INIT_CLK_HIGH;

               when INIT_CLK_HIGH =>

                  RAM_CLK       <= '1';

                  shifter_state <= OUTPUT_GAP;

               -- The data field begins with a gap of zero valued bytes

               -- which are used by the DPLL as SYNC bytes.  The number

               -- of bytes is normally 12 but the exact number is not

               -- important.

               --

               -- The serial output is set to zero when this FSM is disabled.

               ---------------------------------------------------------------

               when OUTPUT_GAP =>

                  if edge_count = GAP_EDGES then

                     -- The first bit of the next byte begins with a 1.

                     serial_output <= "01";

                     edge_count    <= 0;

                     write_state   <= ADDRESS_MARK;

                  else

                     edge_count <= edge_count + 1;

                  end if;

                  shifter_state <= WHILE_500KHZ_HIGH;

               -- Directly after the gap of zero's there are 3 bytes of

               -- 0xA1 which make up the first 3 bytes of the 4 byte

               -- address mark.  The value 0xA1 contains an MFM encoding

               -- violation, this is explained in the final report.

               ---------------------------------------------------------------

               when OUTPUT_AM =>

                  case edge_count is

                     when 0 =>   serial_output <= "10";

                     when 1 =>   serial_output <= "01";

                     when 2 =>   serial_output <= "10";

                     when 3 =>   serial_output <= "00";

                     when 4 =>   serial_output <= "01";

                     when 5 =>   serial_output <= "00";  -- generate an MFM violation

                     when 6 =>   serial_output <= "01";

                     when 7 =>   serial_output <= "11";

                     when others =>

                        null;

                  end case;

                  if edge_count = 7 then

                     edge_count <= 0;

                     if byte_count = (AM_BYTE_CNT - 1) then

                        write_state <= FB;

                     else

                        byte_count <= byte_count + 1;

                     end if;

                  else

                     edge_count <= edge_count + 1;

                  end if;

                  shifter_state <= WHILE_500KHZ_HIGH;

               -- The final byte of the address mark is the value 0xFB.

               -- Following the value of 0xFB is the data.

               ---------------------------------------------------------------

               when OUTPUT_FB =>

                  case edge_count is

                     when 0 =>   serial_output <= "11";

                     when 1 =>   serial_output <= "11";

                     when 2 =>   serial_output <= "11";

                     when 3 =>   serial_output <= "11";

                     when 4 =>   serial_output <= "10";

                     when 5 =>   serial_output <= "01";

                     when 6 =>   serial_output <= "11";

                     when 7 =>   serial_output <= '1' & RAM_DO(7);

                     when others =>

                        null;

                  end case;

                  -- Once the whole byte has been output update the

                  -- CRC and start writing the data.

                  ---------------------------------------------------------------

                  if edge_count = 7 then

                     crc_in      <= sig_crc_out(23 downto 8);

                     crc_data    <= RAM_DO;

                     write_state <= DATA;

                  else

                     edge_count  <= edge_count + 1;

                  end if;

                  shifter_state <= WHILE_500KHZ_HIGH;

               -- The entire contents of the RAM has been converted to serial

               -- so now just stay here.  When EN is deasserted this FSM will

               -- reset.

               ---------------------------------------------------------------

               when IDLE =>

                  shifter_state <= IDLE;

               -- Stay in this state while the 500KHz clock is low.  This

               -- allows the MFM conversion to take place without being

               -- interrupted by this FSM.

               ---------------------------------------------------------------

               when WHILE_500KHZ_LOW =>

                  if clk500khz = '1' then

                     case write_state is

                        when GAP =>          shifter_state <= OUTPUT_GAP;

                        when ADDRESS_MARK => shifter_state <= OUTPUT_AM;

                        when FB =>           shifter_state <= OUTPUT_FB;

                        when DATA =>         shifter_state <= OUTPUT_BIT;

                        when CRC_FIELD =>    shifter_state <= OUTPUT_CRC;

                        when others =>

                           null;

                     end case;

                  else

                     shifter_state <= WHILE_500KHZ_LOW;

                  end if;

               -- The serial output from this FSM happens in the first few

               -- MCLK pulses of the 500KHz clock so wait here for the

               -- remaing time.

               ---------------------------------------------------------------

               when WHILE_500KHZ_HIGH =>

                  RAM_CLK <= '0';

                  if clk500khz = '0' then

                     shifter_state <= WHILE_500KHZ_LOW;

                  else

                     shifter_state <= WHILE_500KHZ_HIGH;

                  end if;

               -- On the rising edge of the 500KHz clock output the

               -- next bit from the RAM.

               ---------------------------------------------------------------

               when OUTPUT_BIT =>

                  serial_output <= serial_output(0) & RAM_DO(bit_ptr);

                  -- If it's the final bit of the byte go and get the next byte.

                  if bit_ptr = 0 then

                     bit_ptr       <= 7;

                     shifter_state <= INC_ADDR;

                  else

                     bit_ptr       <= bit_ptr - 1;

                     shifter_state <= WHILE_500KHZ_HIGH;

                  end if;

               -- Increment the RAM address to get the next byte.

               ---------------------------------------------------------------

               when INC_ADDR =>

                  if serial_addr = "111111111" then

                     -- We have now converted the entire contents of the RAM

                     -- so write the CRC field next.

                     write_state   <= CRC_FIELD;

                     shifter_state <= WHILE_500KHZ_HIGH;

                  else

                     -- Increment the RAM address.

                     serial_addr   <= serial_addr + '1';

                     shifter_state <= CLOCK_RAM;

                  end if;

               -- When the RAM address is changed the RAM clock must be pulsed

               -- and the CRC needs to updated with the new byte.

               ---------------------------------------------------------------

               when CLOCK_RAM =>

                  RAM_CLK       <= '1';

                  shifter_state <= UPDATE_CRC;

               -- Directly after getting a new byte from the RAM update the 

               -- CRC.

               ---------------------------------------------------------------

               when UPDATE_CRC =>

                  crc_in         <= sig_crc_out(23 downto 8);

                  crc_data       <= RAM_DO;

                  shifter_state  <= WHILE_500KHZ_HIGH;

               -- Now all the data has been outputted output the CRC.

               ---------------------------------------------------------------

               when OUTPUT_CRC =>

                  serial_output <= serial_output(0) & sig_crc_out(crc_ptr);

                  -- Once the final bit has been output stay in the IDLE state.

                  if crc_ptr = 0 then

                     BSY           <= '0';

                     shifter_state <= IDLE;

                  else

                     crc_ptr       <= crc_ptr - 1;

                     shifter_state <= WHILE_500KHZ_HIGH;

                  end if;

               when others =>

                  null;

            end case;

         end if;

      end if;

   end process shifter;

--------------------------------------------------------------------------

--------------------------------------------------------------------------

end mfm_encoder_arch;

--------------------------------------------------------------------------

-- FILENAME : mfm_to_basic.vhd

--

-- Convert the MFM signal from the disk drive to a 'Basic MFM' signal.

--

-- See the final report for a description of why and what a 'Basic MFM'

-- signal is.

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 10 December 2003

-- TAB SETTING  : 4

-- RESET        : Async (active low)

-- CLOCK        : The disk drive MFM signal

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity mfm_to_basic is

    port ( RST          : in std_logic;

           MFM_IN       : in std_logic;

           BASIC_OUT    : out std_logic

         );

end mfm_to_basic;

architecture mfm_to_basic_arch of mfm_to_basic is

   signal basic_mfm : std_logic;

begin

   BASIC_OUT <= basic_mfm;

   main : process(RST, MFM_IN)

   begin

      if RST = '0' then

         basic_mfm <= '0';

      elsif rising_edge(MFM_IN) then

         basic_mfm <= not basic_mfm;

      end if;

   end process main;

end mfm_to_basic_arch;

--------------------------------------------------------------------------

-- FILENAME : read_address_field.vhd

--

-- When ever the 'Address Mark' of an 'Address Field' is detected this

-- component will read the sector and head fields.  The CRC field is also

-- read and checked agains't a pre-calculated CRC.  If the CRC's match

-- then the sector and head values are considered to be valid.

--

-- This component signals to the reading and writing components where

-- abouts on the disk the read / write head is.

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 20 December 2003

-- TAB SETTING  : 4

-- RESET        : Async (active low)

-- CLOCK        : 32MHz (not clock dependent)

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity read_address_field is

    Port ( MCLK            : in std_logic;

           EN              : in std_logic;

           DATA_IN         : in std_logic_vector(7 downto 0);

           BYTE_COUNT      : in std_logic_vector(9 downto 0);

           CRC_OUT         : in std_logic_vector(15 downto 0);

           CRC_IN          : out std_logic_vector(15 downto 0);

           CRC_DATA        : out std_logic_vector(7 downto 0);

           SECTOR          : out std_logic_vector(4 downto 0)

         );

end read_address_field;

architecture read_address_field_arch of read_address_field is

   type state_type is ( STORE_AF, CRC_TRACK, CRC_HEAD, CRC_SECTOR, CRC_BYTES, CHECK_CRC );

   signal state               : state_type;

   signal track_reg           : std_logic_vector(7 downto 0);

   signal sector_reg          : std_logic_vector(7 downto 0);

   signal side_reg            : std_logic_vector(7 downto 0);

   signal crc_reg             : std_logic_vector(15 downto 0);

begin

   main : process(MCLK)

   begin

      if rising_edge(MCLK) then

         -- This process should only be active when the read / write

         -- head of the disk drive is in the address field of a sector.

         -- If at any point we leave the address field then this process

         -- must be reset or it will become unsynchronized with the data.

         if EN = '0' then

            track_reg   <= (others => '0');

            side_reg    <= (others => '0');

            sector_reg  <= (others => '1');

            SECTOR      <= sector_reg(4 downto 0);

            crc_reg     <= (others => '0');

            state       <= STORE_AF;

         else  -- we are in the address field

            case state is

               -- Stay here storing the data from the address field.  When 

               -- the 6th and final byte of the address field is read, 

               -- calculate the CRC.

               --

               -- Although I ignore the track field I still have to read it

               -- to check the CRC is correct.

               ---------------------------------------------------------------

               when STORE_AF =>

                  case byte_count is

                     when "0000000001" => track_reg            <= DATA_IN;

                     when "0000000010" => side_reg             <= DATA_IN;

                     when "0000000011" => sector_reg           <= DATA_IN;

                     when "0000000101" => crc_reg(15 downto 8) <= DATA_IN;

                     when "0000000110" => crc_reg(7 downto 0)  <= DATA_IN;

                                          state                <= CRC_TRACK;

                     when others => null;

                  end case;

               -- Initialise the CRC with the address mark of the

               -- address field and then load the track field (field 1 of 4).

               ---------------------------------------------------------------

               when CRC_TRACK =>

                  crc_in   <= x"B230";

                  crc_data <= track_reg;

                  state    <= CRC_HEAD;

               -- Load the head field (field 2 of 4).

               ---------------------------------------------------------------

               when CRC_HEAD =>

                  crc_in   <= crc_out;

                  crc_data <= side_reg;

                  state    <= CRC_SECTOR;

               -- Load the sector field (field 3 of 4).

               ---------------------------------------------------------------

               when CRC_SECTOR =>

                  crc_in   <= crc_out;

                  crc_data <= sector_reg;

                  state    <= CRC_BYTES;

               -- Load the number of bytes, which is always fixed at two 

               -- (field 4 of 4).

               ---------------------------------------------------------------

               when CRC_BYTES =>

                  crc_in   <= crc_out;

                  crc_data <= x"02";

                  state    <= CHECK_CRC;

               -- Check the CRC field from the address field matches

               -- our calculated CRC.  If it does assert af_valid to

               -- confirm the data is correct and then stay here.  When

               -- the next address mark of the next address field is

               -- detected this state machine will reset.

               ---------------------------------------------------------------

               when CHECK_CRC =>

                  if crc_reg = crc_out then

                     SECTOR <= sector_reg(4 downto 0);

                  else

                     SECTOR <= (others => '1');

                  end if;

                  state <= CHECK_CRC;

               when others =>

                  null;

            end case;

         end if;

      end if;

   end process main;

end read_address_field_arch;

--------------------------------------------------------------------------

-- FILENAME : read_data_field.vhd

--

-- Reads the data field of a disk.

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 20 December 2003

-- TAB SETTING  : 4

-- RESET        : EN (sync)

-- CLOCK        : 32MHz (clock dependent)

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity read_data_field is

    port ( MCLK               : in std_logic;

           EN                 : in std_logic;

           DATA_IN            : in std_logic_vector(7 downto 0);

           NEW_DATA           : in std_logic;

           RD_SECT            : in std_logic;

           INDEX_COUNT        : in std_logic_vector(3 downto 0);

           READ_SECTOR        : in std_logic_vector(4 downto 0);

           CURRENT_SECTOR     : in std_logic_vector(4 downto 0);

           BYTE_COUNT         : in std_logic_vector(9 downto 0);

           DATA_FIELD         : in std_logic;

           BSY                : out std_logic;

           RAM_CLK            : out std_logic;

           RAM_ADDR           : out std_logic_vector(8 downto 0);

           CRC_ERROR          : out std_logic;

           SEEK_ERROR         : out std_logic;

           CRC_OUT            : in std_logic_vector(15 downto 0);

           CRC_IN             : out std_logic_vector(15 downto 0);

           CRC_DATA           : out std_logic_vector(7 downto 0);

           CRC_EN             : out std_logic

         );

end read_data_field;

architecture read_data_field_arch of read_data_field is

   type state_type is ( IDLE, SEEKING, WAIT_FOR_BYTE, NEWBYTE, INC_RAM_ADDR, WAIT_FOR_NEXT_BIT, READ_CRC, CHECK_CRC );

   signal state            : state_type;

   signal timeout_en       : std_logic;

   signal sig_ram_addr     : std_logic_vector(8 downto 0);

   signal crc_reg          : std_logic_vector(15 downto 0);

   signal delay_cnt        : integer range 0 to 64000;

   constant INDEX_TIMEOUT  : std_logic_vector(3 downto 0) := "1111";

   constant DURATION_2MS   : integer := 64000;

begin

   RAM_ADDR <= sig_ram_addr;

   main : process(MCLK)

   begin

      if rising_edge(MCLK) then

         if EN = '0' then

            BSY         <= '0';

            CRC_ERROR   <= '0';

            SEEK_ERROR  <= '0';

            CRC_EN      <= '0';

            state       <= IDLE;

         else

            case state is

               -- Wait here until the external RD_SECT signal goes high.

               ---------------------------------------------------------------

               when IDLE =>

                  RAM_CLK       <= '0';

                  sig_ram_addr  <= (others => '0');

                  timeout_en    <= '0';

                  delay_cnt     <= 0;

                  CRC_EN        <= '0';

                  if RD_SECT = '1' then

                     BSY    <= '1';

                     state  <= SEEKING;

                  else

                     BSY    <= '0';

                     state  <= IDLE;

                  end if;

               -- Wait here until the correct address field is found and

               -- when it is get ready to read the following data field.

               -- The correct address field must be found within 10 revolutions

               -- of the disk, if it is not a seek error is reported and the

               -- reading is cancelled.

               ---------------------------------------------------------------

               when SEEKING =>

                  -- Enable the index_counter process count the number

                  -- of disk revolutions.                

                  if INDEX_COUNT = "0000" then

                     timeout_en <= '1';

                  end if;

                  if INDEX_COUNT = INDEX_TIMEOUT and timeout_en = '1' then

                     -- Assume the sector cannot be found and give up.

                     SEEK_ERROR <= '1';

                     state      <= IDLE;

                  elsif CURRENT_SECTOR = READ_SECTOR then

                     SEEK_ERROR <= '0';

                     CRC_EN <= '1';

                     -- Initialise the CRC with the address mark of the 

                     -- data field.

                     crc_in   <= x"CDB4";

                     crc_data <= x"FB";

                     state    <= WAIT_FOR_BYTE;

                  end if;

               -- Wait here until a new byte arrives.  When we first

               -- enter this state we will still be in the address field

               -- so it's important to check we are still the in the data field.

               ---------------------------------------------------------------

               when WAIT_FOR_BYTE =>

                  if NEW_DATA = '1' and DATA_FIELD = '1' then

                     state <= NEWBYTE;

                  end if;

               -- A new byte has arrived so put it in the memory and add

               -- it to the running CRC.

               ---------------------------------------------------------------

               when NEWBYTE =>

                  -- Put the new byte in the CRC.

                  crc_in   <= crc_out;

                  crc_data <= DATA_IN;

                  -- Signal to the RAM to store the byte (byte_reg holds

                  -- the new byte).

                  RAM_CLK <= '1';

                  if sig_ram_addr = "111111111" then

                     -- We've now read 512 bytes of the data field so

                     -- check the CRC.

                     state <= READ_CRC;

                  else  -- We still have more bytes to read.

                     state <= INC_RAM_ADDR;

                  end if;

               -- Increment the RAM address.

               ---------------------------------------------------------------

               when INC_RAM_ADDR =>

                  RAM_CLK      <= '0';

                  sig_ram_addr <= sig_ram_addr + '1';

                  state        <= WAIT_FOR_NEXT_BIT;

               -- The signal sig_newbyte will still indicate the arrival

               -- the processed byte so wait here until it clears, otherwise

               -- we will store it multiple times.

               ---------------------------------------------------------------

               when WAIT_FOR_NEXT_BIT =>

                  if NEW_DATA = '0' then

                     state <= WAIT_FOR_BYTE;

                  end if;

               -- We have read the entire data area so now read the 

               -- 16 bit CRC.

               ---------------------------------------------------------------

               when READ_CRC =>

                  if NEW_DATA = '1' then

                     case BYTE_COUNT is

                        when "1000000001" =>

                           crc_reg(15 downto 8) <= DATA_IN;

                        when "1000000010" =>

                           crc_reg(7 downto 0) <= DATA_IN;

                           state               <= CHECK_CRC;

                        when others =>

                           null;

                     end case;

                  end if;  

               -- Check the read CRC matches are generated CRC and

               -- set the CRC_ERROR appropiatley.

               ---------------------------------------------------------------

               when CHECK_CRC =>

                  if crc_reg = crc_out then

                     CRC_ERROR <= '0';

                  else

                     CRC_ERROR <= '1';

                  end if;

                  state <= IDLE;             

               when others =>

                  null;

            end case;

         end if;

      end if;

   end process main;

end read_data_field_arch;

--------------------------------------------------------------------------

-- FILENAME : shift_32.vhd

--

-- A 32 bit shift register for holding the basic mfm signal.

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 20 December 2003

-- TAB SETTING  : 4

-- RESET        : Async

-- CLOCK        : DPLL_CLK

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity shift_32 is

    port ( RST       : in std_logic;

           CLK       : in std_logic;

           D         : in std_logic;

           Q         : out std_logic_vector(31 downto 0)

         );

end shift_32;

architecture shift_32_arch of shift_32 is

   signal data : std_logic_vector(31 downto 0);

begin

   Q <= data;

   main : process(RST, CLK)

   begin

      if RST = '0' then

         data <= (others => '0');

      elsif rising_edge(CLK) then

         data <= data(30 downto 0) & d;

      end if;

   end process main;

end shift_32_arch;

--------------------------------------------------------------------------

-- FILENAME : step_controller.vhd

--

-- This component is responsible for moving the read / write head to the

-- correct track during normal operations.  When the init_controller

-- component is active it has total control of the read / write head and

-- this component synchronusly resets.

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 30 December 2003

-- TAB SETTING  : 4

-- CLEAR        : Sync (controller_rdy)

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity step_controller is

    port ( RST          : in std_logic;

           MCLK         : in std_logic;

           EN           : in std_logic;

           TRACK        : in std_logic_vector(7 downto 0);

           BSY          : out std_logic;

           STEP         : out std_logic;

           DIRECTION    : out std_logic

         );

end step_controller;

architecture step_controller_arch of step_controller is

   signal move_head        : std_logic;

   signal current_track    : std_logic_vector(7 downto 0);

   signal step_dly         : integer range 0 to 200000;

   constant DURATION_5MS   : integer := 160000;

   constant DURATION_4MS   : integer := 128000;

begin

   DIRECTION   <= '1' when current_track > TRACK    else '0';

   BSY         <= '0' when (current_track = TRACK and step_dly = 0)    else '1';

   STEP        <= '0' when step_dly >= DURATION_4MS else '1';

   main : process(RST, MCLK)

   begin

      if RST = '0' then

         current_track  <= (others => '0');

         step_dly       <= 0;

         move_head      <= '0';

      elsif rising_edge(MCLK) then

         if EN = '0' then

            move_head   <= '0';

            step_dly    <= 0;

         elsif move_head = '1' then

            if step_dly = DURATION_5MS then

               move_head   <= '0';

               step_dly    <= 0;

            else

               step_dly <= step_dly + 1;

            end if;

         elsif current_track < TRACK then

            current_track  <= current_track + 1;

            move_head      <= '1';

         elsif current_track > TRACK then

            current_track  <= current_track - 1;

            move_head      <= '1';

         end if;

      end if;

   end process main;

end step_controller_arch;

--------------------------------------------------------------------------

-- FILENAME : synchronizer.vhd

--

-- Synchronize the UNSYNC_IN signal with the CLK to reduce metastability.

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 8 December 2003

-- TAB SETTING  : 4

-- CLEAR        : Async (active low)

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

entity synchronizer is

   port( CLK         : in std_logic;

         CLR         : in std_logic;

         UNSYNC_IN   : in std_logic;

         SYNC_OUT    : out std_logic

       );

end synchronizer;

architecture synchronizer_arch of synchronizer is

   component flipflop

   port( D     : in  std_logic;

         CLK   : in  std_logic;          

         CLR   : in  std_logic;

         Q     : out std_logic

      );

   end component;

   signal wire : std_logic;

begin

   ff1 : flipflop port map ( 

      D     => UNSYNC_IN,

      CLK   => CLK,

      CLR   => CLR,

      Q     => wire

   );

   ff2 : flipflop port map ( 

      D     => wire,

      CLK   => CLK,

      CLR   => CLR,

      Q     => SYNC_OUT

   );

end architecture synchronizer_arch;

--------------------------------------------------------------------------

-- FILENAME : flipflop.vhd

--

-- A single D type flip flop.  Two of these flip flops are used by the

-- synchronizer module.

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 8 December 2003

-- TAB SETTING  : 4

-- CLEAR        : Async (active low)

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity flipflop is

    port ( D      : in  std_logic;

           CLK    : in  std_logic;          

           CLR    : in  std_logic;

           Q      : out std_logic

         );

end flipflop;

architecture flipflop_arch of flipflop is

begin

   main : process(CLK, CLR)

   begin

      if CLR = '0' then

         Q <= '0';

      elsif rising_edge(CLK) then

         Q <= D;

      end if;

   end process;

end flipflop_arch;

--------------------------------------------------------------------------

-- FILENAME : write_data_field.vhd

--

-- This component monitors the external WR_SECT signal and when the user

-- requests the controller to write a sector this component then waits

-- for the read / write head to move to the correct sector.  Once in

-- position the mfm_encoder is enabled which then does all the work.

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 20 January 2004

-- TAB SETTING  : 4

-- RESET        : Sync (when the controller is not ready)

-- CLOCK        : 32MHz (not clock dependent)

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity write_data_field is

    port ( MCLK               : in std_logic;

           EN                 : in std_logic;

           WR_SECT            : in std_logic;

           ADDRESS_FIELD      : in std_logic;

           WRITE_PROTECT      : in std_logic;

           ENCODER_BSY        : in std_logic;

           INDEX_COUNT        : in std_logic_vector(3 downto 0);

           CURRENT_SECTOR     : in std_logic_vector(4 downto 0);

           WRITE_SECTOR       : in std_logic_vector(4 downto 0);

           BYTE_COUNT         : in std_logic_vector(9 downto 0);

           BSY                : out std_logic;

           SEEK_ERROR         : out std_logic;

           WP_ERROR           : out std_logic;

           ENCODER_EN         : out std_logic

         );

end write_data_field;

architecture write_data_field_arch of write_data_field is

   type state_type is ( IDLE, SEEKING, WAIT_FOR_DFAM, WRITING );

   signal state               : state_type;

   signal timeout_en          : std_logic;

   constant INDEX_TIMEOUT     : std_logic_vector(3 downto 0) := "1111";

begin

   main : process(MCLK)

   begin

      if rising_edge(MCLK) then

         -- Synchronusly reset by the controller_rdy signal.

         if EN = '0' then

            ENCODER_EN  <= '0';

            BSY         <= '0';

            SEEK_ERROR  <= '0';

            WP_ERROR    <= '0';

            state       <= IDLE;

         else

            case state is

               -- Stay in this state until the external WR_SECT signal goes

               -- high.  When it does try and find the correct sector.

               ---------------------------------------------------------------

               when IDLE =>

                  timeout_en  <= '0';

                  if WR_SECT = '1' then

                     BSY   <= '1';

                     state <= SEEKING;

                  else

                     BSY   <= '0';

                     state <= IDLE;

                  end if;

               -- Wait for the correct address field to be detected.

               ---------------------------------------------------------------

               when SEEKING =>

                  if INDEX_COUNT = "0000" then

                     -- The index counter does not have a reset (see the

                     -- INDEX_COUNTER component) so wait for it to reach

                     -- zero before enabling the timeout option.

                     timeout_en <= '1';

                  end if;

                  if WRITE_PROTECT = '0' then

                     -- The disk is write protected so we can't do anything.

                     WP_ERROR <= '1';

                     state    <= IDLE;

                  elsif INDEX_COUNT = INDEX_TIMEOUT and timeout_en = '1' then

                     -- The sector cannot be found within a set number of

                     -- disk revolutions.

                     SEEK_ERROR <= '1';

                     state      <= IDLE;

                  elsif CURRENT_SECTOR = WRITE_SECTOR then

                     SEEK_ERROR <= '0';

                     WP_ERROR <= '0';

                     -- The correct address field has been found.

                     state      <= WAIT_FOR_DFAM;

                  else

                     state      <= SEEKING;

                  end if;

               -- Wait until we are 26 bytes into the address field as this

               -- puts us in the gap area between the address field and the

               -- data field.  Once in the gap start the writing process.

               ---------------------------------------------------------------

               when WAIT_FOR_DFAM =>

                  if BYTE_COUNT = "0000011010" and ADDRESS_FIELD = '1' then

                     ENCODER_EN <= '1';

                     state      <= WRITING;

                  end if;

               -- Stay here until the mfm_encoder component has finished

               -- writing the new data field.

               ---------------------------------------------------------------

               when WRITING =>

                  if ENCODER_BSY = '0' then

                     ENCODER_EN <= '0';

                     state      <= IDLE;

                  end if;

               when others =>

                  null;

            end case;

         end if;

      end if;

   end process main;

end write_data_field_arch;

--------------------------------------------------------------------------

-- FILENAME : i2c_manager.vhd

--

-- Processes the commands coming from i2c_slave.  

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 16 April 2004

-- TAB SETTING  : 4

-- RESET        : Async (active low)

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity i2c_manager is

    port ( RST                : in std_logic;

           MCLK               : in std_logic;

           RAM_DO             : in std_logic_vector(7 downto 0);

           RDY                : in std_logic;

           BSY                : in std_logic;

           CRC_ERROR          : in std_logic;

           SEEK_ERROR         : in std_logic;

           WP_ERROR           : in std_logic;

           FAT_VALUE_IN       : in std_logic_vector(11 downto 0);

           DIR_OFFSET         : in std_logic_vector(8 downto 0);

           I2C_ADDR           : in std_logic_vector(2 downto 0);

           TRACK              : out std_logic_vector(7 downto 0);

           SIDE               : out std_logic;

           WR_SECT            : out std_logic;

           RD_SECT            : out std_logic;

           SECTOR             : out std_logic_vector(4 downto 0);

           FAT_VALUE_OUT      : out std_logic_vector(11 downto 0);

           FAT_ENTRY          : out std_logic_vector(11 downto 0);

           DIR_ENTRY          : out std_logic_vector(7 downto 0);

           MEM_WE             : out std_logic;

           RAM_CLK            : out std_logic;

           RD_FAT             : out std_logic;

           WR_FAT             : out std_logic;

           SET_DIR            : out std_logic;

           WR_DIR             : out std_logic;

           RAM_DI             : out std_logic_vector(7 downto 0);

           MEM_ADDR           : out std_logic_vector(8 downto 0);

           SCL                : inout std_logic;

           SDA                : inout std_logic

         );

end i2c_manager;

architecture i2c_manager_arch of i2c_manager is

   component i2c_slave

   port(

      RST            : in std_logic;

      MCLK           : in std_logic;

      DATA_IN        : in std_logic_vector(7 downto 0);

      ACK_IN         : in std_logic;

      RECV           : in std_logic;

      SEND           : in std_logic;    

      SCL            : inout std_logic;

      SDA            : inout std_logic;      

      DATA_OUT       : out std_logic_vector(7 downto 0);

      HOLDING        : out std_logic;

      BYTE_COUNT     : out std_logic_vector(9 downto 0);

      START          : out std_logic

      );

   end component;

   type state_type is ( CLOCK_RAM, READ_RAM, INC_ADDR, WAIT_FOR_NEXT );

   signal i2c_cmd             : std_logic_vector(7 downto 0);

   signal state               : state_type;

   signal i2c_ack_in          : std_logic;

   signal i2c_holding         : std_logic;

   signal i2c_recv            : std_logic;

   signal i2c_send            : std_logic;

   signal i2c_send_data       : std_logic;

   signal i2c_start           : std_logic;

   signal i2c_recv_control    : std_logic;

   signal i2c_recv_command    : std_logic;

   signal i2c_recv_fat        : std_logic;

   signal cmd_valid           : std_logic;

   signal i2c_recv_sector     : std_logic;

   signal i2c_recv_fat_v      : std_logic;

   signal i2c_active          : std_logic;

   signal i2c_rw              : std_logic;

   signal i2c_send_command    : std_logic;

   signal i2c_recv_data       : std_logic;

   signal i2c_recv_set_dir    : std_logic;

   signal idc_address         : std_logic_vector(6 downto 0);

   signal i2c_data_in         : std_logic_vector(7 downto 0);

   signal i2c_data_out        : std_logic_vector(7 downto 0);

   signal data                : std_logic_vector(7 downto 0);

   signal status              : std_logic_vector(7 downto 0);

   signal d_entry             : std_logic_vector(7 downto 0);

   signal address             : std_logic_vector(8 downto 0);

   signal byte_cnt            : std_logic_vector(9 downto 0);

   signal f_entry             : std_logic_vector(11 downto 0);

   signal f_value             : std_logic_vector(11 downto 0);

   constant WRITE             : std_logic := '0';

   constant READ              : std_logic := '1';

   constant CMD_FAT_ENTRY     : std_logic_vector(7 downto 0) := x"46";

   constant CMD_FAT_VALUE     : std_logic_vector(7 downto 0) := x"47";

   constant CMD_SECTOR        : std_logic_vector(7 downto 0) := x"4F";

   constant CMD_DATA          : std_logic_vector(7 downto 0) := x"F0";

   constant CMD_STATUS        : std_logic_vector(7 downto 0) := x"53";

   constant CMD_DIR_ENTRY     : std_logic_vector(7 downto 0) := x"88";

   constant CMD_DIR_VALUE     : std_logic_vector(7 downto 0) := x"99";

begin

   idc_address(6 downto 4) <= (others => '0');

   idc_address(3) <= I2C_ADDR(2);

   idc_address(2) <= I2C_ADDR(1);

   idc_address(1) <= I2C_ADDR(0);

   idc_address(0) <= '1';

   c0 : i2c_slave PORT MAP(

      RST               => RST,

      MCLK              => MCLK,

      DATA_IN           => i2c_data_in,

      DATA_OUT          => i2c_data_out,

      ACK_IN            => i2c_ack_in,

      SCL               => SCL,

      SDA               => SDA,

      HOLDING           => i2c_holding,

      RECV              => i2c_recv,

      SEND              => i2c_send,

      BYTE_COUNT        => byte_cnt,

      START             => i2c_start

   );

   DIR_ENTRY     <= d_entry;

   FAT_ENTRY     <= f_entry;

   RAM_DI        <= i2c_data_out;

   FAT_VALUE_OUT <= f_value;

   status(0) <= RDY;

   status(1) <= BSY;

   status(2) <= CRC_ERROR;

   status(3) <= SEEK_ERROR;

   status(4) <= WP_ERROR;

   status(7 downto 5) <= (others => '0');

   cmd_valid <= '1' when (i2c_cmd = CMD_DIR_ENTRY) or (i2c_cmd = CMD_FAT_ENTRY) or 

                         (i2c_cmd = CMD_FAT_VALUE) or (i2c_cmd = CMD_SECTOR) or 

                         (i2c_cmd = CMD_DATA) or (i2c_cmd = CMD_DIR_VALUE) or 

                         (i2c_cmd = CMD_STATUS and i2c_rw = READ) else '0';

   i2c_ack_in <= '0' when (byte_cnt = x"001" and i2c_active = '1') or

                          (byte_cnt = x"002" and cmd_valid = '1') or

                          (byte_cnt > x"002" and i2c_cmd /= CMD_STATUS and 

                          (not((i2c_cmd = CMD_FAT_VALUE or i2c_cmd = CMD_DATA or i2c_cmd = CMD_DIR_VALUE) and i2c_rw = READ))) 

                          else '1';

   -- One of these, but not both, must be asserted otherwise

   -- SCL will be held low forever.

   i2c_send <= '1' when (i2c_cmd = CMD_STATUS or i2c_cmd = CMD_FAT_VALUE) and i2c_rw = READ else 

                        (i2c_send_command or i2c_send_data);

   i2c_recv <= i2c_recv_control or i2c_recv_command or i2c_recv_fat or i2c_recv_sector or 

               i2c_recv_data or i2c_recv_fat_v or i2c_recv_set_dir;

   i2c_data_in <= status                               when (i2c_cmd = CMD_STATUS    and i2c_rw = READ and byte_cnt = x"3") else 

                  ("0000" & FAT_VALUE_IN(11 downto 8)) when (i2c_cmd = CMD_FAT_VALUE and i2c_rw = READ and byte_cnt = x"3") else

                  FAT_VALUE_IN(7 downto 0)             when (i2c_cmd = CMD_FAT_VALUE and i2c_rw = READ and byte_cnt = x"4") else

                  data                                 when ((i2c_cmd = CMD_DATA or i2c_cmd = CMD_DIR_VALUE)     and i2c_rw = READ ) else

                  (others => '1');

                  --and byte_cnt > x"2"

   MEM_WE   <= '1' when (i2c_cmd = CMD_DATA or i2c_cmd = CMD_DIR_VALUE) and i2c_rw = WRITE else '0';

   MEM_ADDR <= address when i2c_cmd /= CMD_DIR_VALUE else DIR_OFFSET + address;

   --------------------------------------------------------------------------

   -- PROCESS : control_byte

   --

   -- Detect the control byte.  When a STOP is detected processes the current

   -- command, if any.

   --------------------------------------------------------------------------

   control_byte : process(MCLK)

   begin

      if rising_edge(MCLK) then

         if i2c_start = '0' then

            -- i2c_cmd isn't cleared until i2c_active goes low so we

            -- have plenty of time to process it.

            case i2c_cmd is

               when CMD_FAT_ENTRY =>

                  if i2c_rw = READ then

                     RD_FAT <= '1';

                  else

                     WR_FAT <= '1';

                  end if;

               when CMD_FAT_VALUE =>

               when CMD_DIR_VALUE =>

               when CMD_SECTOR =>

                  if i2c_rw = READ then

                     RD_SECT <= '1';

                  else

                     WR_SECT <= '1';

                  end if;

               when CMD_DATA =>

               when CMD_STATUS =>

               when CMD_DIR_ENTRY =>

                  if i2c_rw = READ then

                     SET_DIR <= '1';

                  else

                     WR_DIR <= '1';

                  end if;

               when others =>

                  WR_DIR <= '0';

                  SET_DIR <= '0';

                  RD_FAT <= '0';

                  WR_FAT <= '0';

                  RD_SECT <= '0';

                  WR_SECT <= '0';

            end case;

            -- this will cause i2c_cmd to be cleared so on the

            -- next rising edge of MCLK the i2c_cmd case statement

            -- will execute the others option

            i2c_active <= '0';

            i2c_recv_control <= '1';

         else

            if i2c_holding = '1' and byte_cnt = x"001" then

               if i2c_data_out(7 downto 1) = idc_address then

                  i2c_active <= '1';

                  i2c_rw <= i2c_data_out(0);

               end if;

               i2c_recv_control <= '1';

            else

               i2c_recv_control <= '0';

            end if;

         end if;

      end if;

   end process control_byte;

   --------------------------------------------------------------------------

   -- PROCESS : command_byte

   --

   -- Process the command byte.

   --------------------------------------------------------------------------

   command_byte : process(RST, MCLK)

   begin

      if RST = '0' then       

         i2c_cmd <= (others => '0');

         i2c_send_command <= '0';

         i2c_recv_command <= '0';

      elsif rising_edge(MCLK) then

         if i2c_active = '0' then

            i2c_cmd <= (others => '0');

         else

            if i2c_holding = '1' and byte_cnt = x"002" then

               i2c_cmd <= i2c_data_out;

               case i2c_data_out is             

                  when CMD_FAT_ENTRY =>

                     i2c_recv_command <= '1';

                  when CMD_FAT_VALUE =>

                     if i2c_rw = WRITE then

                        i2c_recv_command <= '1';

                     else

                        i2c_send_command <= '1';

                     end if;

                  when CMD_DIR_VALUE =>

                  when CMD_SECTOR =>

                     i2c_recv_command <= '1';

                  when CMD_DATA =>

                     -- taken care off in the WHEN clause

                  when CMD_STATUS =>

                  when CMD_DIR_ENTRY =>

                     i2c_recv_command <= '1';

                  when others =>

                     null;

               end case;

            else

               i2c_send_command <= '0';

               i2c_recv_command <= '0';

            end if;

         end if;

      end if;

   end process command_byte;

   --------------------------------------------------------------------------

   -- PROCESS : dir_entry_command

   --

   -- Store the directory entry byte of the dir entry command.

   --------------------------------------------------------------------------

   dir_entry_command : process(MCLK)

   begin

      if rising_edge(MCLK) then

         if i2c_cmd = CMD_DIR_ENTRY then

            if i2c_holding = '1' then

               if byte_cnt = x"003" then

                  if i2c_rw = READ then

                     d_entry <= i2c_data_out;

                  end if;

               end if;

               i2c_recv_set_dir <= '1';

            else

               i2c_recv_set_dir <= '0';

            end if;

         end if;

      end if;

   end process dir_entry_command;

   --------------------------------------------------------------------------

   -- PROCESS : fat_entry_command

   --

   -- Store the FAT entry bytes of the fat entry command.

   --------------------------------------------------------------------------

   fat_entry_command : process(MCLK)

   begin

      if rising_edge(MCLK) then

         if i2c_cmd = CMD_FAT_ENTRY then

            if i2c_holding = '1' then

               if byte_cnt = x"003" then

                  f_entry(11 downto 8) <= i2c_data_out(3 downto 0);

               elsif byte_cnt = x"004" then

                  f_entry(7 downto 0) <= i2c_data_out;

               end if;

               i2c_recv_fat <= '1';

            else

               i2c_recv_fat <= '0';

            end if;

         end if;

      end if;

   end process fat_entry_command;

   --------------------------------------------------------------------------

   -- PROCESS : fat_value_command

   --

   -- Store the FAT value bytes of the fat value command.

   --------------------------------------------------------------------------

   fat_value_command : process(MCLK)

   begin

      if rising_edge(MCLK) then

         if i2c_cmd = CMD_FAT_VALUE and i2c_rw = WRITE then

            if i2c_holding = '1' then

               if byte_cnt = x"003" then

                  f_value(11 downto 8) <= i2c_data_out(3 downto 0);

               elsif byte_cnt = x"004" then

                  f_value(7 downto 0) <= i2c_data_out;

               end if;

               i2c_recv_fat_v <= '1';

            else

               i2c_recv_fat_v <= '0';

            end if;

         end if;

      end if;

   end process fat_value_command;

   --------------------------------------------------------------------------

   -- PROCESS : sector_command

   --

   -- Store the side, track and sector values when reading or writing a 

   -- sector.

   --------------------------------------------------------------------------

   sector_command : process(MCLK)

   begin

      if rising_edge(MCLK) then

         if i2c_cmd = CMD_SECTOR then

            if i2c_holding = '1' then

               if byte_cnt = x"003" then

                  TRACK <= i2c_data_out;

               elsif byte_cnt = x"004" then

                  SIDE <= i2c_data_out(7);

                  SECTOR <= i2c_data_out(4 downto 0);

               end if;

               i2c_recv_sector <= '1';

            else

               i2c_recv_sector <= '0';

            end if;

         end if;

      end if;

   end process sector_command;

   --------------------------------------------------------------------------

   -- PROCESS : data_command

   --

   -- Accesses the disk drive controllers RAM.  This is done when reading or

   -- writing data or directory entries.

   --------------------------------------------------------------------------

   data_command : process(MCLK)

   begin

      if rising_edge(MCLK) then

         if i2c_active = '0' then

            i2c_send_data <= '0';

            i2c_recv_data <= '0';

            address <= (others => '0');

         else

            if i2c_cmd = CMD_DATA or i2c_cmd = CMD_DIR_VALUE then

               if i2c_holding = '1' then

                  case state is

                     -- Read or write the RAM.

                     ---------------------------------------------------------------

                     when CLOCK_RAM =>

                        RAM_CLK <= '1';

                        state <= READ_RAM;

                     -- Store the value from RAM.

                     ---------------------------------------------------------------

                     when READ_RAM =>

                        data <= RAM_DO;

                        state <= INC_ADDR;

                     -- Goto the next RAM adress.

                     ---------------------------------------------------------------

                     when INC_ADDR =>

                        RAM_CLK <= '0';

                        if i2c_rw = READ then

                           address <= address + '1';

                           i2c_send_data <= '1';

                        else

                           if byte_cnt > x"02" then

                              address <= address + '1';

                           end if;

                           i2c_recv_data <= '1';

                        end if;

                        state <= WAIT_FOR_NEXT;

                     -- Wait for the next I2C holding period (clock stretching).

                     ---------------------------------------------------------------

                     when WAIT_FOR_NEXT =>

                        state <= WAIT_FOR_NEXT;

                     when others =>

                        null;

                  end case;

               else

                  RAM_CLK <= '0';

                  state <= CLOCK_RAM;

                  i2c_send_data <= '0';

                  i2c_recv_data <= '0';

               end if;

            end if;

         end if;

      end if;

   end process data_command;

end i2c_manager_arch;

--------------------------------------------------------------------------

-- FILENAME : i2c_slave.vhd

--

-- This module implements an I2C slave controller.

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 20 April 2004

-- TAB SETTING  : 4

-- RESET        : Async (active low)

-- CLOCK        : 32MHz (not clock dependent)

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity i2c_slave is

    port ( RST                : in std_logic;

           MCLK               : in std_logic;

           SEND               : in std_logic;

           ACK_IN             : in std_logic;

           RECV               : in std_logic;

           DATA_IN            : in std_logic_vector(7 downto 0);

           HOLDING            : out std_logic;

           DATA_OUT           : out std_logic_vector(7 downto 0);

           BYTE_COUNT         : out std_logic_vector(9 downto 0);

           START              : out std_logic;

           SCL                : inout std_logic;

           SDA                : inout std_logic

         );

end i2c_slave;

architecture i2c_slave_arch of i2c_slave is

   component synchronizer

   port(

      CLK               : in  std_logic;

      CLR               : in  std_logic;

      UNSYNC_IN         : in  std_logic;          

      SYNC_OUT          : out std_logic

      );

   end component;

   signal old_scl             : std_logic;

   signal s_scl               : std_logic;

   signal s_sda               : std_logic;

   signal tx_out              : std_logic;

   signal old_clk             : std_logic;

   signal old_sda             : std_logic;

   signal sync_scl            : std_logic;

   signal sync_sda            : std_logic;

   signal d_scl               : std_logic;

   signal d_sda               : std_logic;

   signal start_con           : std_logic;

   signal nacked              : std_logic;

   signal bit_cnt             : integer range 0 to 9;

   signal hold_bit            : integer range 0 to 9;

   signal byte_cnt            : std_logic_vector(9 downto 0);

   signal send_byte           : std_logic_vector(9 downto 0);

begin

   c1 : synchronizer port map(

      CLK            => MCLK,

      CLR            => RST,

      UNSYNC_IN      => SCL,

      SYNC_OUT       => sync_scl

   );

   c2 : synchronizer port map(

      CLK            => MCLK,

      CLR            => RST,

      UNSYNC_in      => SDA,

      SYNC_out       => sync_sda

   );

   BYTE_COUNT <= byte_cnt;

   SDA <= '0' when start_con = '1' and byte_cnt > 0 and nacked = '0' and (

                   (byte_cnt = send_byte and bit_cnt > 0 and tx_out = '0') or 

                   (byte_cnt /= send_byte and bit_cnt = 0 and ACK_IN = '0')) 

              else 'Z';

   HOLDING  <= '1' when hold_bit = bit_cnt else '0';

   START    <= start_con;

   --------------------------------------------------------------------------

   -- PROCESS : delay_sda_scl

   -- 

   -- Store the current and previous I2C bus status.  This is used to detect

   -- rising and falling edges.

   --------------------------------------------------------------------------

   delay_sda_scl : process(MCLK)

   begin

      if rising_edge(MCLK) then

         s_scl <= sync_scl;

         s_sda <= sync_sda;

         d_scl <= s_scl;

         d_sda <= s_sda;

      end if;

   end process delay_sda_scl;

   --------------------------------------------------------------------------

   -- PROCESS : scl_hold

   -- 

   -- Hold SCL low (clock stretching) while the system decides what to do.

   --

   -- If receiving a byte hold SCL low before the ACK bit, but if sending

   -- a byte hold SCL low after the ACK bit.

   --------------------------------------------------------------------------

   scl_hold : process(RST, MCLK)

   begin

      if RST = '0' then

         SCL <= 'Z';

      elsif rising_edge(MCLK) then

         if s_scl = '0' and (bit_cnt = hold_bit) and start_con = '1' then

            SCL <= '0';

         else

            SCL <= 'Z';

         end if;

      end if;

   end process scl_hold;

   --------------------------------------------------------------------------

   -- PROCESS : start_stop

   -- 

   -- Detect START and STOP conditions on the I2C bus.

   --------------------------------------------------------------------------

   start_stop : process(RST, MCLK)

   begin

      if RST = '0' then

         start_con <= '0';

      elsif rising_edge(MCLK) then

         if d_scl = '1' and s_scl = '1' then

            if d_sda = '1' and s_sda = '0' then

               start_con <= '1';

            elsif d_sda = '0' and s_sda = '1' then

               start_con <= '0';

            end if;

         end if;

      end if;

   end process start_stop;

   --------------------------------------------------------------------------

   -- PROCESS : counter

   -- 

   -- Count the bits and bytes on the I2C bus.

   --------------------------------------------------------------------------

   counter : process(MCLK)

   begin

      if rising_edge(MCLK) then

         if start_con = '0' then

            bit_cnt <= 0;

            byte_cnt <= (others => '0');

         elsif d_scl = '1' and s_scl = '0' then

            if bit_cnt = 0 then

               bit_cnt <= 8;

               if byte_cnt < 1000 then

                  byte_cnt <= byte_cnt + 1;

               end if;

            else

               bit_cnt <= bit_cnt - 1;

            end if;

         end if;

      end if;

   end process counter;

   --------------------------------------------------------------------------

   -- PROCESS : shift_regs

   --

   -- Shift bits in and out of the I2C bus.

   --------------------------------------------------------------------------

   shift_regs : process(RST, MCLK)

   begin

      if RST = '0' then

         DATA_OUT <= (others => '0');

      elsif rising_edge(MCLK) then

         if d_scl = '0' and s_scl = '0' then

            if bit_cnt > 0 then

               tx_out <= DATA_IN(bit_cnt - 1);

            end if;

         elsif d_scl = '1' and s_scl = '1' then

            if bit_cnt > 0 then

               DATA_OUT(bit_cnt - 1) <= s_sda;

            end if;

         end if;

      end if;

   end process shift_regs;

   --------------------------------------------------------------------------

   -- PROCESS : next_op

   --

   -- Process the SEND and RECV inputs and calculate the next place to hold

   -- SCL low.

   --------------------------------------------------------------------------

   next_op : process(MCLK)

   begin

      if rising_edge(MCLK) then

         if start_con = '0' then

            hold_bit <= 5;

            send_byte <= (others => '0');

         else

            if bit_cnt = 7 then

               if byte_cnt = send_byte then -- sending

                  hold_bit <= 8;

               else -- receiving

                  hold_bit <= 0;

               end if;

            elsif hold_bit = bit_cnt then

               if SEND = '1' then

                  -- Send a byte out.

                  if bit_cnt = 8 then

                     send_byte <= byte_cnt;

                  else

                     send_byte <= byte_cnt + '1';

                  end if;

                  hold_bit <= 5;

               elsif RECV = '1' then

                  -- Recieve a byte.

                  hold_bit <= 5;

               end if;

            end if;

         end if;

      end if;

   end process next_op;

   --------------------------------------------------------------------------

   -- PROCESS : read_ack

   --

   -- Detect a NACK and stop everything.  NACK's are used to stop the

   -- slave from transmitting (see page 10 of the I2C specification).

   --------------------------------------------------------------------------

   read_ack : process(MCLK)

   begin

      if rising_edge(MCLK) then

         if start_con = '0' then

            nacked <= '0';

         else

            if send_byte = byte_cnt and byte_cnt > 0 and bit_cnt = 0 then

               if d_scl = '1' and s_scl = '1' and s_sda = '1' then

                  nacked <= '1';

               end if;

            end if;

         end if;

      end if;

   end process read_ack;

end i2c_slave_arch;

--------------------------------------------------------------------------

-- FILENAME : read_fat.vhd

--

-- Read's a single entry from the first FAT. 

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 16 April 2004

-- TAB SETTING  : 4

-- RESET        : Async (active low)

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity read_fat is

   port ( EN            : in std_logic;

          MCLK          : in std_logic;

          BSY           : out std_logic;

          ENTRY         : in std_logic_vector(11 downto 0);

          RD            : in std_logic;

          DATA_IN       : in std_logic_vector(7 downto 0);

          FAT_OUT       : out std_logic_vector(11 downto 0);

          RAM_ADDR      : out std_logic_vector(8 downto 0);

          SECTOR        : out std_logic_vector(4 downto 0);

          SIDE          : out std_logic;

          TRACK         : out std_logic_vector(7 downto 0);

          RD_BYTE       : out std_logic;

          RW_BSY        : in std_logic

        );

end read_fat;

architecture read_fat_arch of read_fat is

   type state_type is ( IDLE, CALC_LOCATION, READ_BYTE, WAIT_FOR_READ );

   type byte_type  is ( HIGH_BYTE, LOW_BYTE );

   signal state            : state_type;

   signal current_byte     : byte_type;

   signal hi_byte          : std_logic_vector(7 downto 0);

   signal lo_byte          : std_logic_vector(7 downto 0);

   signal lo_sector        : std_logic_vector(4 downto 0);

   signal hi_sector        : std_logic_vector(4 downto 0);

   signal lo_address       : std_logic_vector(8 downto 0);

   signal hi_address       : std_logic_vector(8 downto 0);

   signal fat_offset       : std_logic_vector(12 downto 0);

   constant FAT1_OFFSET    : std_logic_vector(4 downto 0) := "00010";

begin

   SIDE        <= '1';

   TRACK       <= (others => '0');

   SECTOR      <= (hi_sector + FAT1_OFFSET)  when current_byte = HIGH_BYTE else                 

                  (lo_sector + FAT1_OFFSET);

   RAM_ADDR    <= hi_address when current_byte = HIGH_BYTE else lo_address;

   FAT_OUT     <= lo_byte(3 downto 0) & hi_byte when ENTRY(0) = '0' else 

                  lo_byte & hi_byte(7 downto 4);

   main : process(MCLK)

   begin

      if rising_edge(MCLK) then

         if EN = '0' then

            state <= IDLE;

         else

            case state is

               -- Wait here for the external RD signal to go high.

               ---------------------------------------------------------------   

               when IDLE =>

                  RD_BYTE  <= '0';

                  current_byte <= HIGH_BYTE;

                  if RD = '1' then

                     fat_offset <= ('0' & ENTRY) + ("00" & ENTRY(11 downto 1));

                     state <= CALC_LOCATION;

                     BSY   <= '1';

                  else

                     state <= IDLE;

                     BSY   <= '0';

                  end if;

               -- Calculate the location of the entry.

               ---------------------------------------------------------------

               when CALC_LOCATION =>

                  hi_address  <= fat_offset(8 downto 0);

                  hi_sector   <= '0' & fat_offset(12 downto 9);

                  if ENTRY(8 downto 0) = "101010101" then

                     lo_address <= (others => '0');

                     lo_sector   <= ('0' & fat_offset(12 downto 9)) + '1';

                  else

                     lo_address  <= fat_offset(8 downto 0) + '1';

                     lo_sector   <= '0' & fat_offset(12 downto 9);

                  end if;  

                  state <= READ_BYTE;

               -- Read the byte of the FAT entry

               ---------------------------------------------------------------

               when READ_BYTE =>

                  RD_BYTE <= '1';

                  if RW_BSY = '1' then

                     state <= WAIT_FOR_READ;

                  end if;

               -- Wait for the read to finish and then read the next one if

               -- there is another.

               ---------------------------------------------------------------

               when WAIT_FOR_READ =>

                  RD_BYTE <= '0';

                  if RW_BSY = '0' then

                     if current_byte = HIGH_BYTE then

                        hi_byte <= DATA_IN;

                        current_byte <= LOW_BYTE;

                        state <= READ_BYTE;

                     else

                        lo_byte <= DATA_IN;

                        state <= IDLE;

                     end if;

                  end if;  

               when others =>

                  null;

            end case;

         end if;

      end if;

   end process main;

end read_fat_arch;

--------------------------------------------------------------------------

-- FILENAME : rw_byte.vhd

--

-- Reads or writes a single byte from a sector on the disk.  If reading a

-- byte then the sector is first read and then the byte from that sector

-- is output.  If writing the sector is first read then the byte is 

-- changed, and then the sector is put back on the disk.

--

-- This component is mainly used when reading and writing to the FAT.

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 2 April 2004

-- TAB SETTING  : 4

-- RESET        : Sync

-- CLOCK        : 32MHz

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity rw_byte is

    port ( MCLK               : in std_logic;

           SIDE_IN            : in std_logic;           

           RD_BYTE            : in std_logic;

           WR_BYTE            : in std_logic;

           FDD_BSY            : in std_logic;

           FDD_RDY            : in std_logic;

           CRC_ERROR          : in std_logic;

           SEEK_ERROR         : in std_logic;

           WP_ERROR           : in std_logic;

           SECTOR_IN          : in std_logic_vector(4 downto 0);

           TRACK_IN           : in std_logic_vector(7 downto 0);

           RAM_DO             : in std_logic_vector(7 downto 0);

           DATA_IN            : in std_logic_vector(7 downto 0);

           ADDR_IN            : in std_logic_vector(8 downto 0);

           SIDE_OUT           : out std_logic;

           BSY                : out std_logic;

           ERROR              : out std_logic;

           RAM_CLK            : out std_logic;

           RAM_WE             : out std_logic;

           RD_SECT            : out std_logic;

           WR_SECT            : out std_logic;

           SECTOR_OUT         : out std_logic_vector(4 downto 0);

           RAM_DI             : out std_logic_vector(7 downto 0);

           DATA_OUT           : out std_logic_vector(7 downto 0);

           TRACK_OUT          : out std_logic_vector(7 downto 0);

           ADDR_OUT           : out std_logic_vector(8 downto 0)

         );

end rw_byte;

architecture rw_byte_arch of rw_byte is

   type mode_type  is ( READING, WRITING );

   type state_type is ( IDLE, READ_SECTOR, WAIT_FOR_READ, CLOCK_RAM, 

                        WRITE_SECTOR, WAIT_FOR_WRITE );

   signal mode       : mode_type;

   signal state      : state_type;

begin

   ADDR_OUT    <= ADDR_IN;

   SECTOR_OUT  <= SECTOR_IN;

   TRACK_OUT   <= TRACK_IN;

   SIDE_OUT    <= SIDE_IN;

   RAM_DI      <= DATA_IN;

   DATA_OUT    <= RAM_DO;

   main : process(MCLK)

   begin

      if rising_edge(MCLK) then

         if FDD_RDY = '0' then

            RAM_CLK     <= '0';

            RD_SECT     <= '0';

            WR_SECT     <= '0';

            BSY         <= '0';

            ERROR       <= '0';

            state       <= IDLE;

         else

            case state is

               -- Wait here until the external read or write signals

               -- go high.

               ---------------------------------------------------------------

               when IDLE =>

                  RAM_CLK <= '0';

                  if RD_BYTE = '1' and FDD_BSY = '0' then

                     RAM_WE   <= '0';

                     mode     <= READING;

                     BSY      <= '1';

                     state    <= READ_SECTOR;

                  elsif WR_BYTE = '1' and FDD_BSY = '0' then

                     RAM_WE   <= '1';

                     mode     <= WRITING;

                     BSY      <= '1';

                     state    <= READ_SECTOR;

                  else

                     BSY      <= '0';

                     state    <= IDLE;

                  end if;

               -- Instruct the FDD controller to read a sector.

               ---------------------------------------------------------------

               when READ_SECTOR =>

                  RD_SECT <= '1';

                  if FDD_BSY = '1' then

                     state <= WAIT_FOR_READ;

                  else

                     state <= READ_SECTOR;

                  end if;

               -- Wait for the FDD controller to finish reading the sector.

               ---------------------------------------------------------------

               when WAIT_FOR_READ =>

                  RD_SECT <= '0';

                  if FDD_BSY = '0' then

                     if SEEK_ERROR = '1' or CRC_ERROR = '1' then

                        ERROR <= '1';

                        state <= IDLE;

                     else

                        ERROR <= '0';

                        state <= CLOCK_RAM;

                     end if;

                  else

                     state <= WAIT_FOR_READ;

                  end if;

               -- Assert the RAM clock.  If reading this will read a byte

               -- from RAM or if writing then this will write a byte to RAM.

               ---------------------------------------------------------------

               when CLOCK_RAM =>

                  RAM_CLK <= '1';

                  if mode = READING then

                     state <= IDLE;

                  else  -- mode = writing

                     if FDD_BSY = '0' then

                        state <= WRITE_SECTOR;

                     else

                        state <= CLOCK_RAM;

                     end if;

                  end if;

               -- Instruct the FDD controller to write a sector.

               ---------------------------------------------------------------

               when WRITE_SECTOR =>

                  RAM_CLK <= '0';

                  WR_SECT <= '1';

                  if FDD_BSY = '1' then

                     state <= WAIT_FOR_WRITE;

                  else

                     state <= WRITE_SECTOR;

                  end if;

               -- Wait for the FDD controller to finish writing the sector.

               ---------------------------------------------------------------

               when WAIT_FOR_WRITE =>

                  WR_SECT <= '0';

                  if FDD_BSY = '0' then

                     if SEEK_ERROR = '1' or WP_ERROR = '1' then

                        ERROR <= '1';

                     else

                        ERROR <= '0';

                     end if;

                     state <= IDLE;

                  else

                     state <= WAIT_FOR_WRITE;

                  end if;  

               when others =>

                  null;

            end case;

         end if;

      end if;

   end process main;

end rw_byte_arch;

--------------------------------------------------------------------------

-- FILENAME : set_directory.vhd

--

-- Calculates the position of a directory entry and reads the necessary

-- sector.  The offset of the directory entry is then output.

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 16 April 2004

-- TAB SETTING  : 4

-- RESET        : Sync

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity set_directory is

    port ( FDD_RDY         : in std_logic;

           MCLK            : in std_logic;

           FDD_BSY         : in std_logic;

           ENTRY           : in std_logic_vector(7 downto 0);

           SET             : in std_logic;

           WR_DIR          : in std_logic;

           RAM_WE          : out std_logic;

           SET_BSY         : out std_logic;

           TRACK           : out std_logic_vector(7 downto 0);

           SIDE            : out std_logic;

           SECTOR          : out std_logic_vector(4 downto 0);

           OFFSET          : out std_logic_vector(8 downto 0);

           WR_SECT         : out std_logic;

           RD_SECT         : out std_logic

         );

end set_directory;

architecture set_directory_arch of set_directory is

   signal sig_sector       : std_logic_vector(3 downto 0);

   signal sig_offset       : std_logic_vector(3 downto 0);

begin

   SECTOR      <= '0' & sig_sector;

   OFFSET      <= sig_offset & "00000";

   TRACK       <= (others => '0');

   SIDE        <= '0';

   RAM_WE      <= '1';

   main : process(MCLK)

   begin

      if rising_edge(MCLK) then

         if FDD_RDY = '0' then

            SET_BSY     <= '0';

            RD_SECT  <= '0';

            WR_SECT  <= '0';

            sig_sector  <= (others => '0');

            sig_offset  <= (others => '0');

         else

            if FDD_BSY = '1' then

               RD_SECT  <= '0';

               WR_SECT  <= '0';

            elsif SET = '1' and FDD_BSY = '0' then

               sig_sector  <= ENTRY(7 downto 4) + x"2";

               sig_offset  <= ENTRY(3 downto 0);

               RD_SECT  <= '1';

               SET_BSY     <= '1';

            elsif WR_DIR = '1' and FDD_BSY = '0' then

               sig_sector  <= ENTRY(7 downto 4) + x"2";

               sig_offset  <= ENTRY(3 downto 0);

               WR_SECT  <= '1';

               SET_BSY     <= '1';

            elsif FDD_BSY = '0' then

               SET_BSY <= '0';

            end if;

         end if;

      end if;

   end process main;

end set_directory_arch;

--------------------------------------------------------------------------

-- FILENAME : write_fat.vhd

--

-- Writes a new 12 bit entry to the File Allocation Table of a FAT12 disk.

--

-- Both FAT tables are written.

--

-- The document FATGEN103.doc written by Microsoft gives a complete

-- description of how to add new entries to the FAT.  The examples from

-- that document are written in C.  The VHDL in this module is based on

-- those C examples.

--

-- The final project report also gives a more detailed description of how

-- this module is implemented.

--

-- FAT_VALUE is the new 12 bit value to write and ENTRY is the location

-- to write it (ENTRY is equal to N in the FATGEN103.doc document).

--

-- AUTHOR       : Craig Dunn

-- DATE STARTED : 1 April 2004

-- TAB SETTING  : 4

-- RESET        : Sync (controller ready)

-- CLOCK        : 32Mhz

-- KNOWN BUGS   : None

-- VERSION      : 1.0

--

-- All of the design and code in this module is my own work.  No design or

-- code has been borrowed or copied from any source.

--------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity write_fat is

   port ( EN            : in std_logic;

          MCLK          : in std_logic;

          WR            : in std_logic;

          RW_BSY        : in std_logic;

          DATA_IN       : in std_logic_vector(7 downto 0);

          ENTRY         : in std_logic_vector(11 downto 0);

          FAT_VALUE     : in std_logic_vector(11 downto 0);

          RD_BYTE       : out std_logic;

          WR_BYTE       : out std_logic;

          SIDE          : out std_logic;

          BSY           : out std_logic;

          SECTOR        : out std_logic_vector(4 downto 0);

          TRACK         : out std_logic_vector(7 downto 0);

          DATA_OUT      : out std_logic_vector(7 downto 0);

          RAM_ADDR      : out std_logic_vector(8 downto 0)

        );

end write_fat;

architecture write_fat_arch of write_fat is

   type state_type is ( IDLE, READ_BYTE, WAIT_FOR_READ, WRITE_BYTE, 

                        WAIT_FOR_WRITE, CALC_LOCATION );

   type byte_type  is ( FAT1_HI, FAT1_LO, FAT2_HI, FAT2_LO);

   signal state            : state_type;

   signal current_byte     : byte_type;

   signal lo_sector        : std_logic_vector(4 downto 0);

   signal hi_sector        : std_logic_vector(4 downto 0);

   signal lo_address       : std_logic_vector(8 downto 0);

   signal hi_address       : std_logic_vector(8 downto 0);

   signal fat_offset       : std_logic_vector(12 downto 0);

   signal sig_data_in      : std_logic_vector(7 downto 0);

   constant FAT1_OFFSET    : std_logic_vector(4 downto 0) := "00010";

   constant FAT2_OFFSET    : std_logic_vector(4 downto 0) := "01011";

   constant SECS_PER_TRACK : std_logic_vector(4 downto 0) := "10010";

begin

   -- The last sector of the second FAT is on the side one (SIDE = 0).  All other

   -- sectors are on side zero (SIDE = 1).

   SIDE        <= '0' when (current_byte = FAT2_HI and ((hi_sector + FAT2_OFFSET) > SECS_PER_TRACK)) or

                           (current_byte = FAT2_LO and ((lo_sector + FAT2_OFFSET) > SECS_PER_TRACK)) else '1';

   TRACK       <= (others => '0');

   SECTOR      <= (hi_sector + FAT1_OFFSET)  when current_byte = FAT1_HI else                

                  (hi_sector + FAT2_OFFSET)  when (current_byte = FAT2_HI and ((hi_sector + FAT2_OFFSET) <= SECS_PER_TRACK)) else

                  (hi_sector + FAT2_OFFSET - SECS_PER_TRACK)  when (current_byte = FAT2_HI and ((hi_sector + FAT2_OFFSET) > SECS_PER_TRACK)) else

                  (lo_sector + FAT1_OFFSET)  when current_byte = FAT1_LO else

                  (lo_sector + FAT2_OFFSET)  when (current_byte = FAT2_LO and ((lo_sector + FAT2_OFFSET) <= SECS_PER_TRACK)) else

                  (lo_sector + FAT2_OFFSET - SECS_PER_TRACK);

   RAM_ADDR    <= hi_address when (current_byte = FAT1_HI or  current_byte = FAT2_HI) else lo_address;

   DATA_OUT    <= FAT_VALUE(7 downto 0)                            when (current_byte = FAT1_HI or  current_byte = FAT2_HI) and ENTRY(0) = '0' else

                  FAT_VALUE(3 downto 0) & sig_data_in(3 downto 0)  when (current_byte = FAT1_HI or  current_byte = FAT2_HI) and ENTRY(0) = '1' else

                  sig_data_in(7 downto 4) & FAT_VALUE(11 downto 8) when (current_byte = FAT1_LO or  current_byte = FAT2_LO) and ENTRY(0) = '0' else

                  FAT_VALUE(11 downto 4);

   main : process(MCLK)

   begin

      if rising_edge(MCLK) then

         if EN = '0' then

            RD_BYTE  <= '0';

            WR_BYTE  <= '0';

            state    <= IDLE;

         else

            case state is

               -- Stay in this state until the external input of WR

               -- goes high.  When it does start writing the new

               -- FAT entry.

               ------------------------------------------------------------

               when IDLE =>

                  RD_BYTE  <= '0';

                  WR_BYTE  <= '0';

                  current_byte <= FAT1_HI;

                  if WR = '1' then

                     fat_offset <= ('0' & ENTRY) + ("00" & ENTRY(11 downto 1));

                     state <= CALC_LOCATION;

                     BSY   <= '1';

                  else

                     state <= IDLE;

                     BSY   <= '0';

                  end if;

               -- Calculate the location of both the high and low FAT entry

               -- bytes in both FAT tables.

               ------------------------------------------------------------

               when CALC_LOCATION =>

                  hi_address  <= fat_offset(8 downto 0);

                  hi_sector   <= '0' & fat_offset(12 downto 9);

                  -- Check if the FAT entry is located in two sectors.

                  if ENTRY(8 downto 0) = "101010101" then

                     -- The low part of the entry is in a different sector.

                     lo_address <= (others => '0');

                     lo_sector   <= ('0' & fat_offset(12 downto 9)) + '1';

                  else

                     lo_address  <= fat_offset(8 downto 0) + '1';

                     lo_sector   <= '0' & fat_offset(12 downto 9);

                  end if;  

                  state <= READ_BYTE;

               -- Read a byte from the FAT.

               ------------------------------------------------------------

               when READ_BYTE =>

                  RD_BYTE <= '1';

                  if RW_BSY = '1' then

                     state <= WAIT_FOR_READ;

                  end if;

               -- Wait for the read to finish.

               ------------------------------------------------------------

               when WAIT_FOR_READ =>

                  RD_BYTE <= '0';

                  if RW_BSY = '0' then

                     sig_data_in <= DATA_IN;

                     state <= WRITE_BYTE;

                  end if;

               -- Write the new byte back to the FAT.  The byte is changed

               -- in the WHEN clauses at the top of this module.

               ------------------------------------------------------------

               when WRITE_BYTE =>

                  WR_BYTE <= '1';

                  if RW_BSY = '1' then

                     state <= WAIT_FOR_WRITE;

                  end if;

               -- Wait here until the write is complete.  When it is

               -- complete either read the next byte or finish.

               ------------------------------------------------------------

               when WAIT_FOR_WRITE =>

                  WR_BYTE <= '0';

                  if RW_BSY = '0' then

                     case current_byte is

                        when FAT1_HI =>   current_byte <= FAT1_LO;

                                          state <= READ_BYTE;

                        when FAT1_LO =>   current_byte <= FAT2_HI;

                                          state <= READ_BYTE;

                        when FAT2_HI =>   current_byte <= FAT2_LO;

                                          state <= READ_BYTE;

                        when FAT2_LO =>   state <= IDLE;

                        when others =>    null;

                     end case;

                  end if;

               when others =>

                  null;

            end case;

         end if;

      end if;

   end process main;

end write_fat_arch;

Appendix B – Microchip PIC Source Code

;**********************************************************************

;* Filename : fdd_demo.asm

;*

;* Used to test and demonstrate the IDC (I2C Disk Drive Controller).  

;*

;* Receives commands from the UART and converts them to I2C commands.

;*

;* The results of the commands are converted into hexadecimal strings

;* and sent back out of the serial port.

;*

;* The serial port settings are 9600 8-N-1.

;*

;* NOTE : Two big string tables are used, so any code changes have to

;*        take the position of the tables into account.

;*

;* Author       : Craig Dunn (craig_d73@hotmail.com)

;* Date Started : 15 April 2004

;* Tab Setting  : 9

;* Studio       : MPLAB 6.1

;* Clock        : 8MHz (clock dependent - I2C speed, RS232 Baudrate)

;*

;* All of the design and code in this module is my own work.  No 

;* design or code has been borrowed or copied from any source.

;**********************************************************************

#include "p16f874.inc"

        ERRORLEVEL 0, -302              ; Turn off memory bank warnings

        LIST   P=PIC16F874

;**********************************************************************

;* Defines

;**********************************************************************

#define SET_BANK0       BCF     STATUS, RP0

#define SET_BANK1       BSF     STATUS, RP0

#define EEPROM_W        0xA0

#define EEPROM_R        0xA1

#define RX_BIT          0x01

#define CMD_FAT_ENTRY   0x46

#define CMD_FAT_VALUE   0x47

#define CMD_SECTOR      0x4F

#define CMD_DATA        0xF0

#define CMD_STATUS      0x53

#define CMD_DIR_ENTRY   0x88

#define CMD_DIR_VALUE   0x99

#define IDC_R           0x03

#define IDC_W           0x02

#define CR              0x0D

#define FF              0x0C

#define GP_REF_OFF      0x20

track                   EQU     (GP_REF_OFF + 0x00)

side_sector             EQU     (GP_REF_OFF + 0x01)

uart                    EQU     (GP_REF_OFF + 0x02)

rx_reg                  EQU     (GP_REF_OFF + 0x03)

tx_reg                  EQU     (GP_REF_OFF + 0x04)

nibble                  EQU     (GP_REF_OFF + 0x05)

hex_temp                EQU     (GP_REF_OFF + 0x06)

i2c_rx_reg              EQU     (GP_REF_OFF + 0x07)

byte_offset             EQU     (GP_REF_OFF + 0x08)

str_id                  EQU     (GP_REF_OFF + 0x09)

x_cnt                   EQU     (GP_REF_OFF + 0x0A)

hex_reg                 EQU     (GP_REF_OFF + 0x0B)

y_cnt                   EQU     (GP_REF_OFF + 0x0C)

hex_value               EQU     (GP_REF_OFF + 0x0D)

hex_cnt                 EQU     (GP_REF_OFF + 0x0E)

fat_entry_hi            EQU     (GP_REF_OFF + 0x0F)

fat_entry_lo            EQU     (GP_REF_OFF + 0x10)

fat_value_hi            EQU     (GP_REF_OFF + 0x11)

fat_value_lo            EQU     (GP_REF_OFF + 0x12)

dir_entry               EQU     (GP_REF_OFF + 0x13)

tempw                   EQU     (GP_REF_OFF + 0x14)

tempst                  EQU     (GP_REF_OFF + 0x15)

;**********************************************************************

;* Macro's

;*

;* MOVLF  - Move a literal to a file

;* MOVFF  - Move a file to a file

;* SUBLF  - Subtract a literal from a file

;* ADDLF  - Add a literal to a file

;* DCFSNZ - Decrement File Skip if Not Zero

;* ADDFF  - Add file to file

;**********************************************************************

MOVLF   MACRO   literal, file

        MOVLW   literal

        MOVWF   file

        ENDM

MOVFF   MACRO   file_a, file_b

        MOVFW   file_a

        MOVWF   file_b

        ENDM

SUBLF   MACRO   literal, file

        MOVLW   literal

        SUBWF   file, F

        ENDM

ADDLF   MACRO   literal, file

        MOVFW   file

        ADDLW   literal

        MOVWF   file    

        ENDM

DCFSNZ  MACRO   file

        DECFSZ  file, F

        GOTO $+3        ; Not zero

        GOTO $+1        ; Zero

        ENDM

ADDFF   MACRO   file_a, file_b

        MOVFW   file_a

        ADDWF   file_b, F

        ENDM

;**********************************************************************

;* Vector table

;**********************************************************************

        ORG     0x00

        GOTO    init

        ORG     0x04

        GOTO    int_srv

;**********************************************************************

;* Main implementation.

;**********************************************************************

init:   ; Setup the ports

        ;------------------------------------------------------------------

        SET_BANK1

        CLRF    TRISB                   ; Set PORTB as an output (LED's)

        MOVLF   0xFF, TRISC             ; Set PORTC as an input (I2C, UART)

        SET_BANK0

        ; Setup the I2C

        ;------------------------------------------------------------------

        SET_BANK0

        MOVLF   0x38, SSPCON            ; Enable I2C Master mode

        SET_BANK1

        MOVLF   0x00, SSPSTAT

        MOVLF   0x04, SSPADD            ; 400KHz I2C

        SET_BANK0

        ; Setup the UART

        ;------------------------------------------------------------------

        SET_BANK1

        MOVLF   0x33, SPBRG             ; 9600 baud rate

        BSF     TXSTA, BRGH             ; High speed mode

        BSF     TXSTA, TXEN             ; Enable transmit

        SET_BANK0

        BSF     RCSTA, SPEN             ; Enable the serial port

        BSF     RCSTA, CREN             ; Continuous receive

        SET_BANK1

        BSF     PIE1, RCIE              ; Enable receive interrupt

        SET_BANK0

        BSF     INTCON, PEIE            ; Enable unmasked peripheral interrupts

        BSF     INTCON, GIE             ; Enable interrupts

        ; Main implementation

        ;------------------------------------------------------------------

main:   MOVLF   0x00, track

        MOVLF   0x81, side_sector

        MOVLF   0x00, dir_entry

        MOVLF   0x00, fat_entry_hi

        MOVLF   0x00, fat_entry_lo

        MOVLF   0x00, fat_value_hi

        MOVLF   0x00, fat_value_lo

refresh:

        ; Display the menu

        ;------------------------------------------------------------------

        MOVLF   FF, tx_reg

        CALL    uart_tx                 ; Clear the display (Form Feed)

        MOVLF   (menu_str - str_table_start), str_id

        CALL    uart_tx_str

        MOVLF   (current_track_str - str_table_start2), str_id

        CALL    uart_tx_str2

        MOVFF   track, tx_reg

        CALL    uart_tx_hex

        MOVLF   (current_sector_str - str_table_start2), str_id

        CALL    uart_tx_str2

        MOVFF   side_sector, tx_reg

        CALL    uart_tx_hex

        ; Wait here until the user makes a menu choice

        ;------------------------------------------------------------------

wait_cmd:

        BCF     uart, RX_BIT            ; Allows us to receive a byte

wait_new_cmd:

        BTFSC   uart, RX_BIT

        GOTO    process_cmd

        GOTO    wait_new_cmd

        ; Menu choice case statement

        ;------------------------------------------------------------------

process_cmd:    

        MOVFW   rx_reg

        XORLW   '0'

        BTFSC   STATUS, Z

        GOTO    refresh                 ; Refresh the menu

        MOVFW   rx_reg

        XORLW   '1'

        BTFSC   STATUS, Z

        GOTO    cmd_read_sector         ; Read a sector

        MOVFW   rx_reg

        XORLW   '2'

        BTFSC   STATUS, Z

        GOTO    cmd_write_sector        ; Write a sector

        MOVFW   rx_reg

        XORLW   '3'

        BTFSC   STATUS, Z

        GOTO    cmd_read_data           ; Read data from the controller

        MOVFW   rx_reg

        XORLW   '4'

        BTFSC   STATUS, Z

        GOTO    cmd_write_data          ; Write data to the controller

        MOVFW   rx_reg

        XORLW   '5'

        BTFSC   STATUS, Z

        GOTO    cmd_read_fat_entry      ; Read a FAT entry

        MOVFW   rx_reg

        XORLW   '6'

        BTFSC   STATUS, Z

        GOTO    cmd_read_fat_value      ; Read a FAT value

        MOVFW   rx_reg

        XORLW   '7'

        BTFSC   STATUS, Z

        GOTO    cmd_write_fat_entry     ; Write a FAT entry

        MOVFW   rx_reg

        XORLW   '8'

        BTFSC   STATUS, Z

        GOTO    cmd_write_fat_value     ; Write a FAT value

        MOVFW   rx_reg

        XORLW   'A'

        BTFSC   STATUS, Z

        GOTO    cmd_read_dir_entry      ; Read a directory entry

        MOVFW   rx_reg

        XORLW   'B'

        BTFSC   STATUS, Z

        GOTO    cmd_write_dir_entry     ; Write a directory entry

        MOVFW   rx_reg

        XORLW   'C'

        BTFSC   STATUS, Z

        GOTO    cmd_read_dir_value      ; Read a directory value

        MOVFW   rx_reg

        XORLW   'D'

        BTFSC   STATUS, Z

        GOTO    cmd_write_dir_value     ; Write a directory value

        MOVFW   rx_reg

        XORLW   '9'

        BTFSC   STATUS, Z

        GOTO    cmd_status              ; Read the status

        MOVFW   rx_reg

        XORLW   'T'

        BTFSC   STATUS, Z

        GOTO    cmd_track               ; Set the track

        MOVFW   rx_reg

        XORLW   'S'

        BTFSC   STATUS, Z

        GOTO    cmd_sector              ; Set the side / sector

        GOTO    wait_cmd

        ; Read a directory entry

        ;------------------------------------------------------------------

cmd_read_dir_entry:

        MOVLF   (dir_entry_str - str_table_start2), str_id

        CALL    uart_tx_str2    

        CALL    uart_rx_hex

        MOVFF   hex_value, dir_entry

        CALL    idc_read_dir_entry

        GOTO    wait_cmd

        ; Write a directory entry

        ;------------------------------------------------------------------

cmd_write_dir_entry:

        CALL    idc_write_dir_entry

        GOTO    wait_cmd

        ; Read a directory value

        ;------------------------------------------------------------------

cmd_read_dir_value:

        CALL    idc_read_dir_value

        GOTO    wait_cmd

        ; Write a directory value

        ;------------------------------------------------------------------

cmd_write_dir_value:

        MOVLF   (value_str - str_table_start2), str_id

        CALL    uart_tx_str2    

        CALL    idc_write_dir_value

        GOTO    wait_cmd

        ; Read a sector

        ;------------------------------------------------------------------

cmd_read_sector:

        CALL    idc_read_sector

        GOTO    wait_cmd

        ; Write a sector

        ;------------------------------------------------------------------

cmd_write_sector:

        CALL    idc_write_sector

        GOTO    wait_cmd

        ; Read data

        ;------------------------------------------------------------------

cmd_read_data:

        CALL    idc_read_data

        GOTO    wait_cmd

        ; Write data

        ;------------------------------------------------------------------

cmd_write_data:

        MOVLF   (value_str - str_table_start2), str_id

        CALL    uart_tx_str2    

        CALL    idc_write_data

        GOTO    wait_cmd

        ; Read FAT entry

        ;------------------------------------------------------------------

cmd_read_fat_entry:

        MOVLF   (fat_entry_str - str_table_start2), str_id

        CALL    uart_tx_str2    

        CALL    uart_rx_hex

        MOVFF   hex_value, fat_entry_hi

        CALL    uart_rx_hex

        MOVFF   hex_value, fat_entry_lo

        CALL    idc_read_fat_entry

        GOTO    wait_cmd

        ; Read FAT value

        ;------------------------------------------------------------------

cmd_read_fat_value:

        MOVLF   (fat_value_str - str_table_start2), str_id

        CALL    uart_tx_str2

        CALL    idc_read_fat_value

        MOVFF   fat_value_hi, tx_reg

        CALL    uart_tx_hex

        MOVFF   fat_value_lo, tx_reg

        CALL    uart_tx_hex     

        GOTO    wait_cmd

        ; Write FAT entry

        ;------------------------------------------------------------------

cmd_write_fat_entry:

        MOVLF   (fat_entry_str - str_table_start2), str_id

        CALL    uart_tx_str2    

        CALL    uart_rx_hex

        MOVFF   hex_value, fat_entry_hi

        CALL    uart_rx_hex

        MOVFF   hex_value, fat_entry_lo

        CALL    idc_write_fat_entry

        GOTO    wait_cmd

        ; Write FAT value

        ;------------------------------------------------------------------

cmd_write_fat_value:

        MOVLF   (fat_value_str - str_table_start2), str_id

        CALL    uart_tx_str2    

        CALL    uart_rx_hex

        MOVFF   hex_value, fat_value_hi

        CALL    uart_rx_hex

        MOVFF   hex_value, fat_value_lo

        CALL    idc_write_fat_value

        GOTO    wait_cmd

        ; Status

        ;------------------------------------------------------------------

cmd_status:

        MOVLF   (status_str - str_table_start2), str_id

        CALL    uart_tx_str2

        CALL    idc_read_status

        MOVWF   tx_reg

        CALL    uart_tx_hex

        GOTO    wait_cmd

        ; Track

        ;------------------------------------------------------------------

cmd_track:

        MOVLF   (track_str - str_table_start2), str_id

        CALL    uart_tx_str2    

        CALL    uart_rx_hex

        MOVFF   hex_value, track        

        GOTO    refresh

        ; Sector

        ;------------------------------------------------------------------     

cmd_sector:

        MOVLF   (sector_str - str_table_start2), str_id

        CALL    uart_tx_str2    

        CALL    uart_rx_hex

        MOVFF   hex_value, side_sector

        GOTO    refresh

;**********************************************************************

;* Generate an I2C START condition.

;**********************************************************************

i2c_start:

        BCF     PIR1, SSPIF             ; Clear the completed flag

        SET_BANK1

        BSF     SSPCON2, SEN            ; Generate a START

        SET_BANK0

        BTFSS   PIR1, SSPIF             ; Wait until the START is complete

        GOTO    $-1

        RETURN

;**********************************************************************

;* Generate an I2C STOP condition.

;**********************************************************************

i2c_stop:

        BCF     PIR1, SSPIF             ; Clear the completed flag

        SET_BANK1

        BSF     SSPCON2, PEN            ; Generate a STOP

        SET_BANK0

        BTFSS   PIR1, SSPIF             ; Wait until the STOP is complete

        GOTO    $-1

        RETURN

;**********************************************************************

;* Send the byte in W out on the I2C bus.  Doesn't return until the

;* the transmission is complete.

;**********************************************************************

i2c_send:

        BCF     PIR1, SSPIF             ; Clear the completed flag

        MOVWF   SSPBUF                  ; Send the byte

        BTFSS   PIR1, SSPIF             ; Wait here until the byte is sent

        GOTO    $-1

        RETURN

;**********************************************************************

;* Receive a byte from the I2C bus and put it in i2c_rx_reg.

;**********************************************************************

i2c_recv:

        BCF     PIR1, SSPIF             ; Clear the completed flag

        SET_BANK1

        BSF     SSPCON2, RCEN           ; Receive the byte

        SET_BANK0

        BTFSS   PIR1, SSPIF             ; Wait here until the byte is received

        GOTO    $-1

        MOVFF   SSPBUF, i2c_rx_reg      ; Put the received byte in i2c_rx_reg

        RETURN

;**********************************************************************

;* Send an ACK out on the I2C bus.

;********************************************************************** 

i2c_ack:

        BCF     PIR1, SSPIF             ; Clear the completed flag

        SET_BANK1

        BCF     SSPCON2, ACKDT

        BSF     SSPCON2, ACKEN

        SET_BANK0

        BTFSS   PIR1, SSPIF             ; Wait here until the ACK is received

        GOTO    $-1

        RETURN

;**********************************************************************

;* Send a NACK out on the I2C bus.

;********************************************************************** 

i2c_nack:

        BCF     PIR1, SSPIF             ; Clear the completed flag

        SET_BANK1

        BSF     SSPCON2, ACKDT

        BSF     SSPCON2, ACKEN

        SET_BANK0

        BTFSS   PIR1, SSPIF             ; Wait here until the ACK is received

        GOTO    $-1

        RETURN

;**********************************************************************

;* Read the status from the IFC.

;**********************************************************************

idc_read_status:

        CALL    i2c_start               ; START

        MOVLW   IDC_R

        CALL    i2c_send                ; Control byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_read_status_nack

        SET_BANK0

        MOVLW   CMD_STATUS

        CALL    i2c_send                ; Command byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_read_status_nack

        SET_BANK0

        CALL    i2c_recv                ; Receive the status

        CALL    i2c_nack                ; Send a NACK   

idc_read_status_nack:

        SET_BANK0

        CALL    i2c_stop                ; STOP

        RETURN

;**********************************************************************

;* Write a new FAT entry to the IDC.

;**********************************************************************

idc_write_fat_entry:

        CALL    i2c_start               ; START

        MOVLW   IDC_W

        CALL    i2c_send                ; Control byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_wr_fat_entry_nack

        SET_BANK0

        MOVLW   CMD_FAT_ENTRY

        CALL    i2c_send                ; Command byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_wr_fat_entry_nack

        SET_BANK0

        MOVFW   fat_entry_hi

        CALL    i2c_send                ; High entry

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_wr_fat_entry_nack

        SET_BANK0

        MOVFW   fat_entry_lo

        CALL    i2c_send                ; Low entry

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_wr_fat_entry_nack

        SET_BANK0

idc_wr_fat_entry_nack:

        SET_BANK0

        CALL    i2c_stop                ; STOP

        RETURN

;**********************************************************************

;* Write a new value to the current directory entry.

;********************************************************************** 

idc_write_dir_value:

        CALL    i2c_start               ; START

        MOVLW   IDC_W

        CALL    i2c_send                ; Control byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_wr_dir_value_nack

        SET_BANK0

        MOVLW   CMD_DIR_VALUE

        CALL    i2c_send                ; Command byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_wr_dir_value_nack

        SET_BANK0

        ; Keep reading in bytes until the CR is detected

next_dir_byte:

        BCF     uart, RX_BIT

        BTFSS   uart, RX_BIT

        GOTO    $-1

        MOVFF   rx_reg, tx_reg

        CALL    uart_tx

        MOVFW   rx_reg

        XORLW   CR

        BTFSC   STATUS, Z

        GOTO    write_dir_finished

        MOVFW   rx_reg

        CALL    i2c_send

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_wr_dir_value_nack

        SET_BANK0

        GOTO    next_dir_byte

write_dir_finished:

idc_wr_dir_value_nack:

        SET_BANK0

        CALL    i2c_stop

        RETURN

;**********************************************************************

;* Write a new FAT value to the IDC (hi_value, lo_value).

;********************************************************************** 

idc_write_fat_value:

        CALL    i2c_start               ; START

        MOVLW   IDC_W

        CALL    i2c_send                ; Control byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_wr_fat_value_nack

        SET_BANK0

        MOVLW   CMD_FAT_VALUE

        CALL    i2c_send                ; Command byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_wr_fat_value_nack

        SET_BANK0

        MOVFW   fat_value_hi

        CALL    i2c_send                ; High value

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_wr_fat_value_nack

        SET_BANK0

        MOVFW   fat_value_lo

        CALL    i2c_send                ; Low value

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_wr_fat_value_nack

        SET_BANK0

idc_wr_fat_value_nack:

        SET_BANK0

        CALL    i2c_stop

        RETURN

;**********************************************************************

;* Read the FAT value from the IDC.

;**********************************************************************

idc_read_fat_value:

        CALL    i2c_start               ; START

        MOVLW   IDC_R

        CALL    i2c_send                ; Control byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_read_fat_value_nack

        SET_BANK0

        MOVLW   CMD_FAT_VALUE

        CALL    i2c_send                ; Command byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_read_fat_value_nack

        SET_BANK0

        CALL    i2c_recv                ; Receive the hi value

        CALL    i2c_ack                 ; Send an ACK   

        MOVFF   i2c_rx_reg, fat_value_hi

        CALL    i2c_recv                ; Receive the lo value

        CALL    i2c_nack                ; Send an NACK  

        MOVFF   i2c_rx_reg, fat_value_lo

idc_read_fat_value_nack:

        SET_BANK0

        CALL    i2c_stop

        RETURN

;**********************************************************************

;* Instruct the IDC to read a directory entry.

;**********************************************************************

idc_read_dir_entry:

        CALL    i2c_start               ; START

        MOVLW   IDC_R

        CALL    i2c_send                ; Control byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_rd_dir_entry_nack

        SET_BANK0

        MOVLW   CMD_DIR_ENTRY

        CALL    i2c_send                ; Command byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_rd_dir_entry_nack

        SET_BANK0

        MOVFW   dir_entry

        CALL    i2c_send                ; Entry

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_rd_dir_entry_nack

        SET_BANK0

idc_rd_dir_entry_nack:

        SET_BANK0

        CALL    i2c_stop

        RETURN

;**********************************************************************

;* Instruct the IDC to write the current directory entry.

;**********************************************************************

idc_write_dir_entry:

        CALL    i2c_start               ; START

        MOVLW   IDC_W

        CALL    i2c_send                ; Control byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_wr_dir_entry_nack

        SET_BANK0

        MOVLW   CMD_DIR_ENTRY

        CALL    i2c_send                ; Command byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_wr_dir_entry_nack

        SET_BANK0

idc_wr_dir_entry_nack:

        SET_BANK0

        CALL    i2c_stop

        RETURN

;**********************************************************************

;* Instruct the IDC to read a sector (track, side_sector).

;**********************************************************************

idc_read_sector:

        CALL    i2c_start               ; START

        MOVLW   IDC_R

        CALL    i2c_send                ; Control byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_read_sector_nack

        SET_BANK0

        MOVLW   CMD_SECTOR

        CALL    i2c_send                ; Command byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_read_sector_nack

        SET_BANK0

        MOVFW   track

        CALL    i2c_send                ; Track

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_read_sector_nack

        SET_BANK0

        MOVFW   side_sector

        CALL    i2c_send                ; Side / Sector

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_read_sector_nack

        SET_BANK0

idc_read_sector_nack:

        SET_BANK0

        CALL    i2c_stop

        RETURN

;**********************************************************************

;* Instruct the IDC to write a sector (track, side_sector).

;**********************************************************************

idc_write_sector:

        CALL    i2c_start               ; START

        MOVLW   IDC_W

        CALL    i2c_send                ; Control byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_write_sector_nack

        SET_BANK0

        MOVLW   CMD_SECTOR

        CALL    i2c_send                ; Command byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_write_sector_nack

        SET_BANK0

        MOVFW   track

        CALL    i2c_send                ; Track

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_write_sector_nack

        SET_BANK0

        MOVFW   side_sector

        CALL    i2c_send                ; Side / Sector

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_write_sector_nack

        SET_BANK0

idc_write_sector_nack:

        SET_BANK0

        CALL    i2c_stop

        RETURN

;**********************************************************************

;* Read the contents of the IDC's RAM, which contains a sector and

;* display the results as hex strings.

;**********************************************************************

idc_read_data:

        CALL    i2c_start               ; START

        MOVLW   IDC_R

        CALL    i2c_send                ; Control byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_read_data_nack

        SET_BANK0

        MOVLW   CMD_DATA

        CALL    i2c_send                ; Command byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_read_data_nack

        SET_BANK0

        MOVLF   CR, tx_reg              ; Start the display on a new line

        CALL    uart_tx

        MOVLF   0x21, y_cnt             ; 32 lines of 16 bytes

data_new_line:

        MOVLF   0x10, x_cnt             ; 16 bytes per line

        DCFSNZ  y_cnt

        GOTO    data_finish

data_next_byte:

        CALL    i2c_recv                ; Get the byte from the I2C bus

        CALL    i2c_ack

        MOVFF   i2c_rx_reg, tx_reg

        CALL    uart_tx_hex             ; Display the byte as a hex string

        MOVLF   ' ', tx_reg             ; Put a space between the hex strings

        DCFSNZ  x_cnt

        MOVLF   CR, tx_reg              ; End each line with a carriage return

        CALL    uart_tx

        MOVFW   x_cnt

        ADDLW   0x00

        BTFSC   STATUS, Z               ; If the end of the line then start a new line

        GOTO    data_new_line

        GOTO    data_next_byte  

data_finish:

        ; All receiving operations from the slave end in a

        ; NACK.  Putting it here makes the above loop simpler.

        CALL    i2c_recv

        CALL    i2c_nack

idc_read_data_nack:

        SET_BANK0

        CALL    i2c_stop                ; STOP

        RETURN

;**********************************************************************

;* Write data to the IDC.

;********************************************************************** 

idc_write_data:

        CALL    i2c_start               ; START

        MOVLW   IDC_W

        CALL    i2c_send                ; Control byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_write_data_nack

        SET_BANK0

        MOVLW   CMD_DATA

        CALL    i2c_send                ; Command byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_write_data_nack

        SET_BANK0

        ; Keep reading in bytes until the CR is detected

next_data_byte:

        BCF     uart, RX_BIT

        BTFSS   uart, RX_BIT

        GOTO    $-1

        MOVFF   rx_reg, tx_reg

        CALL    uart_tx

        MOVFW   rx_reg

        XORLW   CR

        BTFSC   STATUS, Z

        GOTO    write_data_finished     

        MOVFW   rx_reg

        CALL    i2c_send

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_write_data_nack

        SET_BANK0

        GOTO    next_data_byte

write_data_finished

idc_write_data_nack:

        SET_BANK0

        CALL    i2c_stop

        RETURN

;**********************************************************************

;* Instruct the IDC to read a FAT entry.

;********************************************************************** 

idc_read_fat_entry:

        CALL    i2c_start               ; START

        MOVLW   IDC_R

        CALL    i2c_send                ; Control byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_read_fat_entry_nack

        SET_BANK0

        MOVLW   CMD_FAT_ENTRY

        CALL    i2c_send                ; Command byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_read_fat_entry_nack

        SET_BANK0

        MOVFW   fat_entry_hi

        CALL    i2c_send                ; FAT high entry

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_read_fat_entry_nack

        SET_BANK0

        MOVFW   fat_entry_lo

        CALL    i2c_send                ; FAT low entry

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_read_fat_entry_nack

        SET_BANK0

idc_read_fat_entry_nack:

        SET_BANK0

        CALL    i2c_stop

        RETURN

;**********************************************************************

;* Read a 32 byte directory entry from the IDC and display the

;* results as hex strings.

;**********************************************************************

idc_read_dir_value:

        CALL    i2c_start               ; START

        MOVLW   IDC_R

        CALL    i2c_send                ; Control byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_rd_dir_value_nack

        SET_BANK0

        MOVLW   CMD_DIR_VALUE

        CALL    i2c_send                ; Command byte

        SET_BANK1

        BTFSC   SSPCON2, ACKSTAT        ; Check for ACK

        GOTO    idc_rd_dir_value_nack

        SET_BANK0

        MOVLF   CR, tx_reg

        CALL    uart_tx                 ; Start a new line before display the Dir

        MOVLF   0x03, y_cnt             ; Two lines of 16 bytes

dir_new_line:

        MOVLF   0x10, x_cnt             ; Sixteen bytes per line

        DCFSNZ  y_cnt

        GOTO    dir_finish              ; Displayed the whole directory

dir_next_byte:

        CALL    i2c_recv                ; Get the byte from the I2C bus

        CALL    i2c_ack

        MOVFF   i2c_rx_reg, tx_reg

        CALL    uart_tx_hex             ; Display the byte as a hex string

        MOVLF   ' ', tx_reg             ; Put a space between the bytes

        DCFSNZ  x_cnt

        MOVLF   CR, tx_reg              ; Put a CR at the end of each line

        CALL    uart_tx

        MOVFW   x_cnt

        ADDLW   0x00

        BTFSC   STATUS, Z               ; If x_cnt is start a new line

        GOTO    dir_new_line

        GOTO    dir_next_byte

dir_finish:

        ; All receiving operations from the slave end in a

        ; NACK.  Putting it here makes the above loop simpler.

        CALL    i2c_recv

        CALL    i2c_nack

idc_rd_dir_value_nack:

        SET_BANK0

        CALL    i2c_stop                ; STOP

        RETURN

;**********************************************************************

;* Interrupt service routine.

;*

;* If a byte has been received by the UART and uart, RX_BIT is clear

;* put the byte in rx_reg.

;**********************************************************************

int_srv:

        MOVWF   tempw                   ; Store W and STATUS

        SWAPF   STATUS, W

        SET_BANK0

        MOVWF   tempst

        BTFSS   PIR1, RCIF              ; Check the interrupt is from the UART

        GOTO    int_srv_ret

        BTFSC   uart, RX_BIT            ; If RX_BIT is set then rx_reg

        GOTO    int_srv_ret             ; hasn't been processed yet

        MOVFF   RCREG, rx_reg           ; Store the received byte

        BSF     uart, RX_BIT            ; Signal a new byte has arrived

        MOVFW   RCREG                   ; There could be a second byte

        BCF     RCSTA, CREN

        BSF     RCSTA, CREN

int_srv_ret:

        SWAPF   tempst, W               ; Restore W and STATUS

        MOVWF   STATUS

        SWAPF   tempw, F

        SWAPF   tempw, W

        RETFIE

;**********************************************************************

;* Send whatever is in tx_reg out of the serial port.

;**********************************************************************

uart_tx:

        BTFSS   PIR1, TXIF              ; Wait for the serial port to become free

        GOTO    $-1

        MOVFF   tx_reg, TXREG           ; Send the byte

        RETURN

;**********************************************************************

;* Convert the value in tx_reg to a 2 byte ASCII hex string and send

;* it out of the UART.

;**********************************************************************

uart_tx_hex:

        MOVFW   tx_reg

        MOVWF   hex_temp

        ANDLW   0xF0

        MOVWF   hex_reg

        SWAPF   hex_reg, F

        CALL    to_hex

        MOVWF   tx_reg

        CALL    uart_tx                 ; Top nibble

        MOVFW   hex_temp

        ANDLW   0x0F

        MOVWF   hex_reg

        CALL    to_hex

        MOVWF   tx_reg

        CALL    uart_tx                 ; Bottom nibble

        RETURN

;**********************************************************************

;* Convert the lower nibble of hex_reg to it's hex ASCII equivalent.

;* The result is in W.

;**********************************************************************

to_hex:

        INCF    hex_reg, F

        MOVLW   LOW hex_table

        ADDWF   hex_reg, F

        MOVLW   HIGH hex_table

        BTFSC   STATUS, C

        ADDLW   0x01

        MOVWF   PCLATH

        MOVFW   hex_reg

        CALL    hex_table

        RETURN

;**********************************************************************

;* The to_hex lookup table.

;**********************************************************************

hex_table:

        MOVWF   PCL

        RETLW   '0'

        RETLW   '1'

        RETLW   '2'

        RETLW   '3'

        RETLW   '4'

        RETLW   '5'

        RETLW   '6'

        RETLW   '7'

        RETLW   '8'

        RETLW   '9'

        RETLW   'A'

        RETLW   'B'

        RETLW   'C'

        RETLW   'D'

        RETLW   'E'

        RETLW   'F'

;**********************************************************************

;* Transmit tx_reg as a hex string.

;**********************************************************************

uart_rx_hex:

        BCF     hex_cnt, 0

wait_rx_byte:

        BCF     uart, RX_BIT            ; Allows us to receive a byte

        BTFSS   uart, RX_BIT            ; wait for a byte from the UART

        GOTO    $-1

        MOVFF   rx_reg, tx_reg

        CALL    uart_tx

        MOVFF   rx_reg, hex_temp

        MOVLW   'A'

        SUBWF   hex_temp, F

        BTFSC   STATUS, C

        GOTO    alpha

        ; Numeric

        SUBLF   '0', rx_reg

        GOTO    continue

alpha:  SUBLF   'A', rx_reg

        ADDLF   0x0A, rx_reg

continue:

        BTFSC   hex_cnt, 0

        GOTO    finished

        BSF     hex_cnt, 0

        MOVFF   rx_reg, hex_value

        SWAPF   hex_value, F

        GOTO    wait_rx_byte

finished:

        ADDFF   rx_reg, hex_value

        RETURN  

;**********************************************************************

;* Transmit the string identified by str_id out of the UART.

;**********************************************************************

uart_tx_str:

        INCF    str_id, F

next_byte:

        MOVFF   str_id, byte_offset

        CALL    get_str_byte

        ADDLW   0x00

        BTFSC   STATUS, Z

        GOTO    uart_tx_str_ret

        MOVWF   tx_reg

        CALL    uart_tx

        INCF    str_id, F

        GOTO    next_byte

uart_tx_str_ret:

        RETURN

;**********************************************************************

;* Transmit a string from thex second string table.

;********************************************************************** 

uart_tx_str2:

        INCF    str_id, F

next_byte2:

        MOVFF   str_id, byte_offset

        CALL    get_str_byte2

        ADDLW   0x00

        BTFSC   STATUS, Z

        GOTO    uart_tx_str_ret2

        MOVWF   tx_reg

        CALL    uart_tx

        INCF    str_id, F

        GOTO    next_byte2

uart_tx_str_ret2:

        RETURN

;**********************************************************************

;* Read a byte from the string table.  The byte is identified by

;* byte_offset.

;**********************************************************************

        org 0x400

get_str_byte:

        MOVLW   LOW str_table

        ADDWF   byte_offset, F

        MOVLW   HIGH str_table

        BTFSC   STATUS, C

        ADDLW   0x01

        MOVWF   PCLATH

        MOVFW   byte_offset

        CALL    str_table

        RETURN

;**********************************************************************

;* The string table.  Used by uart_tx_str.

;********************************************************************** 

str_table:

        MOVWF   PCL

str_table_start:

menu_str:       

        DT "IDC Menu", CR, CR

        DT "1. RD sector", CR

        DT "2. WR sector", CR

        DT "3. RD data", CR

        DT "4. WR data", CR

        DT "5. RD FAT Entry", CR

        DT "6. RD FAT Value", CR

        DT "7. WR FAT Entry", CR

        DT "8. WR FAT Value", CR

        DT "A. RD Dir Entry", CR

        DT "B. WR Dir Entry", CR

        DT "C. RD Dir Value", CR

        DT "D. WR Dir Value", CR        

        DT "9. Status", CR

        DT "T. Track", CR

        DT "S. Side / Sector", CR

        DT "0. Refresh", CR, CR, 0x00   

;**********************************************************************

;* Get a byte from the second string table.

;**********************************************************************

        ORG 0x500

get_str_byte2:

        MOVLW   LOW str_table2

        ADDWF   byte_offset, F

        MOVLW   HIGH str_table2

        BTFSC   STATUS, C

        ADDLW   0x01

        MOVWF   PCLATH

        MOVFW   byte_offset

        CALL    str_table

        RETURN

;**********************************************************************

;* The string table.  Used by uart_tx_str2.

;********************************************************************** 

str_table2:

        MOVWF   PCL

str_table_start2:

status_str:     

        DT CR, "STATUS : 0x", 0x00

track_str:

        DT CR, "New Track : 0x", 0x00

sector_str:

        DT CR, "New Side / Sector : 0x", 0x00

fat_entry_str:

        DT CR, "FAT Entry : 0x", 0x00

fat_value_str:

        DT CR, "FAT Value : 0x", 0x00

dir_entry_str:

        DT CR, "DIR Entry : 0x", 0x00

current_track_str:

        DT "Track : 0x", 0x00

current_sector_str:

        DT CR, "Side / Sector : 0x", 0x00

value_str:

        DT CR, "Value : ", 0x00

        END































































PAGE  
Page 167

_1144356059.vsd
�

0�

0�

0�

A2�

A1�

1�

A0�

0�

ACK�

ACK�

0�

0�

0�

1�

1�

1�

1�

1�

ACK�

P�

ACK�

S�

X�

X�

START�

STOP�

CONTROL BYTE�

COMMAND BYTE�

TRACK�

SIDE / SECTOR�

BUS ACTIVITY
MASTER�

SDA LINE�

BUS ACTIVITY�


_1144584054.vsd
MCLK�

SIDE_IN�

RD_BYTE�

WR_BYTE�

FDD_BSY�

FDD_RDY�

CRC_ERROR�

SEEK_ERROR�

WP_ERROR�

SECTOR_IN[4:0]�

TRACK_IN[7:0]�

RAM_DO[7:0]�

DATA_IN[7:0]�

ADDR_IN[8:0]�

SIDE_OUT�

BSY�

ERROR�

RAM_CLK�

RAM_WE�

RD_SECT�

WR_SECT�

SECTOR_OUT[4:0]�

RAM_DI[7:0]�

DATA_OUT[7:0]�

TRACK_OUT[7:0]�

ADDR_OUT[8:0]�

rw_byte�


_1144589740.vsd
�

STOP�

0�

0�

0�

A2�

A1�

1�

A0�

0�

ACK�

ACK�

1�

1�

1�

1�

0�

0�

0�

0�

ACK�

S�

START�

CONTROL BYTE�

COMMAND BYTE�

DATA(n)�

BUS ACTIVITY
MASTER�

SDA LINE�

BUS ACTIVITY�

P�

ACK�

DATA(n+X)�

DATA(n+1)�


_1144590191.vsd
SEND�

ACK_IN�

RECV�

DATA_IN[7:0]�

RST�

MCLK�

HOLDING�

DATA_OUT[7:0]�

BYTE_COUNT[9:0]�

START�

SCL�

SDA�

i2c_slave�


_1144590460.vsd
I2C_ADDR[2:0]�

RAM_DO[7:0]�

RDY�

BSY�

CRC_ERROR�

SEEK_ERROR�

WP_ERROR�

FAT_VALUE_IN[11:0]�

DIR_OFFSET[7:0]�

TRACK[7:0]�

SIDE�

WR_SECT�

RD_SECT�

SECTOR[4:0]�

FAT_VALUE_OUT[11:0]�

FAT_ENTRY[11:0]�

DIR_ENTRY[7:0]�

MEM_WE�

RAM_CLK�

RD_FAT�

WR_FAT�

SET_DIR�

WR_DIR�

RAM_DI[7:0]�

MEM_ADDR[8:0]�

RST�

i2c_manager�

MCLK�

SCL�

SDA�


_1144590617.vsd
RD_SECT�

WR_SECT�

RAM_CLK�

RAM_WE�

SECTOR[4:0]�

TRACK[7:0]�

SIDE�

DATA_IN[7:0]�

RAM_ADDR[8:0]�

RDY�

BSY�

CRC_ERROR�

SEEK_ERROR�

WP_ERROR�

DATA_OUT[7:0]�

RST�

MCLK�

TRACK_00�

INDEX�

READ_DATA�

WRITE_PROTECT�

DISK_CHANGE�

DRIVE_SELECT�

MOTOR_ON�

DIRECTION_SELECT�

STEP�

WRITE_GATE�

WRITE_DATA�

SIDE_ONE_SELECT�

FDDController�

I2C_ADDR[2:0]�


_1144589765.vsd
�

0�

0�

0�

A2�

A1�

1�

A0�

1�

ACK�

ACK�

STOP�

1�

1�

1�

1�

0�

0�

0�

0�

ACK�

DATA(n+1)�

S�

START�

CONTROL BYTE�

COMMAND BYTE�

DATA(n)�

BUS ACTIVITY
MASTER�

SDA LINE�

BUS ACTIVITY�

P�

NACK�

DATA(n+X)�


_1144589206.vsd
�

STOP�

0�

0�

0�

A2�

A1�

1�

A0�

1�

ACK�

1�

ACK�

0�

1�

0�

1�

1�

0�

0�

ACK�

S�

START�

CONTROL BYTE�

COMMAND BYTE�

VALUE(n)�

BUS ACTIVITY
MASTER�

SDA LINE�

BUS ACTIVITY�

P�

NACK�

VALUE(n+X)�

VALUE(n+1)�


_1144589660.vsd
�

0�

0�

0�

A2�

A1�

1�

A0�

0�

ACK�

ACK�

1�

0�

0�

0�

1�

0�

0�

0�

ACK�

P�

S�

START�

STOP�

CONTROL BYTE�

COMMAND BYTE�

BUS ACTIVITY
MASTER�

SDA LINE�

BUS ACTIVITY�


_1144589571.vsd
g�

s�

d�

g�

d�

s�

10K�

10K�

10K�

10K�

FPGA�

EEPROM�

MICRO
CONTROLLER�

�

SDA�

SCL�

SDA�

SCL�

VDD = 3.3V�

VDD = 5V�

148�

150�

5�

6�

18�

23�

BS108�

BS108�


_1144589185.vsd
�

STOP�

0�

0�

0�

A2�

A1�

1�

A0�

0�

ACK�

ACK�

1�

0�

1�

0�

1�

1�

0�

0�

ACK�

S�

START�

CONTROL BYTE�

COMMAND BYTE�

VALUE(n)�

BUS ACTIVITY
MASTER�

SDA LINE�

BUS ACTIVITY�

P�

ACK�

VALUE(n+X)�

VALUE(n+1)�


_1144588984.vsd
�

0�

0�

0�

A2�

A1�

1�

A0�

1�

ACK�

ACK�

0�

0�

1�

1�

0�

1�

1�

0�

NACK�

S�

START�

CONTROL BYTE�

COMMAND BYTE�

STATUS�

BUS ACTIVITY
MASTER�

SDA LINE�

BUS ACTIVITY�

P�

STOP�


_1144442117

_1144442289

_1144442372

_1144442232

_1144356931.vsd
�

0�

0�

0�

A2�

A1�

1�

A0�

0�

ACK�

ACK�

0�

0�

0�

1�

0�

1�

1�

1�

ACK�

P�

ACK�

S�

X�

START�

STOP�

CONTROL BYTE�

COMMAND BYTE�

HIGH VALUE�

LOW VALUE�

BUS ACTIVITY
MASTER�

SDA LINE�

BUS ACTIVITY�

X�

X�

X�


_1144358647.vsd
BSY�

ENTRY[11:0]�

WR�

DATA_IN[7:0]�

DATA_OUT[7:0]�

RAM_ADDR[8:0]�

SECTOR[4:0]�

SIDE�

TRACK[7:0]�

RD_BYTE�

RW_BSY�

EN�

MCLK�

write_fat�

FAT_VALUE[11:0]�

WR_BYTE�


_1144359156.vsd
FDD_RDY�

MCLK�

FDD_BSY�

ENTRY[7:0]�

SET�

WR_DIR�

RAM_WE�

SET_BSY�

TRACK[7:0]�

SIDE�

SECTOR[7:0]�

OFFSET[8:0]�

WR_SECT�

RD_SECT�

set_directory�


_1144358470.vsd
BSY�

ENTRY[11:0]�

RD�

DATA_IN[7:0]�

FAT_OUT[11:0]�

RAM_ADDR[8:0]�

SECTOR[4:0]�

SIDE�

TRACK[7:0]�

RD_BYTE�

RW_BSY�

EN�

MCLK�

read_fat�


_1144357139.vsd
�

0�

0�

0�

A2�

A1�

1�

A0�

1�

ACK�

ACK�

1�

0�

0�

0�

1�

0�

0�

0�

ACK�

P�

S�

START�

STOP�

CONTROL BYTE�

COMMAND BYTE�

ENTRY�

BUS ACTIVITY
MASTER�

SDA LINE�

BUS ACTIVITY�


_1144356832.vsd
�

0�

0�

0�

A2�

A1�

1�

A0�

0�

ACK�

ACK�

0�

0�

0�

1�

0�

0�

1�

1�

ACK�

P�

ACK�

S�

X�

START�

STOP�

CONTROL BYTE�

COMMAND BYTE�

HIGH ENTRY�

LOW ENTRY�

BUS ACTIVITY
MASTER�

SDA LINE�

BUS ACTIVITY�

X�

X�

X�


_1144356909.vsd
�

0�

0�

0�

A2�

A1�

1�

A0�

1�

ACK�

ACK�

0�

0�

0�

1�

0�

1�

1�

1�

ACK�

P�

NACK�

S�

X�

X�

START�

STOP�

CONTROL BYTE�

COMMAND BYTE�

HIGH VALUE�

LOW VALUE�

X�

BUS ACTIVITY
MASTER�

SDA LINE�

BUS ACTIVITY�

X�


_1144356817.vsd
�

0�

0�

0�

A2�

A1�

1�

A0�

1�

ACK�

ACK�

0�

0�

0�

1�

0�

0�

1�

1�

ACK�

P�

ACK�

S�

X�

START�

STOP�

CONTROL BYTE�

COMMAND BYTE�

HIGH ENTRY�

LOW ENTRY�

BUS ACTIVITY
MASTER�

SDA LINE�

BUS ACTIVITY�

X�

X�

X�


_1144349464.vsd
0xA1�

0xA1�

0xA1�

0xFE�

ADDRESS MARK�

TRACK�

HEAD�

SECTOR�

# BYTES�

CRC
HIGH�

CRC
LOW�

SYNC
12 Bytes
of 0x00�

GAP
22 Bytes
of 0x4E�


_1144349527.vsd
DPLL�

32 Bit Shift Register�

BASIC_MFM�

Serial IN�

Parallel OUT�


_1144355989.vsd
�

1�

ACK�

0�

0�

0�

A2�

A1�

1�

A0�

ACK�

0�

0�

0�

1�

1�

1�

1�

1�

ACK�

P�

ACK�

S�

X�

X�

START�

STOP�

CONTROL BYTE�

COMMAND BYTE�

TRACK�

SIDE / SECTOR�

BUS ACTIVITY
MASTER�

SDA LINE�

BUS ACTIVITY�


_1144349495.vsd
0xA1�

0xA1�

0xA1�

0xFB�

ADDRESS MARK�

512 Bytes of Data�

SYNC
12 Bytes
of 0x00�

CRC
HIGH�

CRC�LOW�

Big
Gap of 0x4E�


_1143140638

_1144349410.vsd
SA�

SE�

SD�

SB�

SC�

DPLL_CLK = �1��

DPLL_CLK = �0��

DPLL_CLK = �0��

DPLL_CLK = �1��

d_mfm == BASIC_MFM�

d_mfm != BASIC_MFM�

a_mfm == BASIC_MFM�

a_mfm != BASIC_MFM�

d_mfm = BASIC_MFM�

d_mfm = BASIC_MFM�

DPLL_CLK = �0��

a_mfm = BASIC_MFM�

a_mfm = BASIC_MFM�

d_mfm = 0�

RST�

NOTE : States only change on the rising edge of a 4 MHz clock (CLK_4MHZ).�


_1143127571

_1143135963

